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Introduction

3D extension of the well-known Simson–Wallace theorem on a
tetrahedron [Roanes, 2000], [Pech, 2005] reads:

Let K , L,M,N be orthogonal projections of the point P to the
faces BCD, ACD, ABD, ABC of a tetrahedron ABCD. Then the
locus of P such that the tetrahedron KLMN has a constant
volume s is the cubic surface

G := ac2f 3E + sQ = 0,

where

E = c2f 2p2q + cf (e2 + f 2 − ce)p2r + cf 2(a− 2b)pq2 + cf 2(a−
2d)pr2 + 2cef (b − d)pqr + b(b − a)f 2q3 + f (be(a− b) + cd(d −
a) +cf 2)q2r + f 2(b2−ab+c2−2ce)qr2 + (be(a−b) +cd(d−a) +
ce(e−c))fr3−ac2f 2pq+acf (ce−e2− f 2)pr +abcf 2q2 +(a(c2d−
2bce + be2)− (cd − be)2 + f 2(ab− b2 − c2))fqr + (ce2(ab + ad −
2bd) + c2de(d − a) + be3(b− a) + f 2(a(cd − be) + e(b2 + c2)))r2
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Introduction
and

Q = 6(e2 + f 2)((cd − be)2 + f 2(b2 + c2))((c(a− d)− e(a−
b))2 + f 2((a− b)2 + c2)).

Regular tetrahedron, volume of KLMN equals −1/10



ADG 2016, Strasbourg, June 27–29, 2016

Introduction

For s = 0 we obtain the famous Cayley cubic, with four singular
points at the vertices of the corresponding tetrahedron ABCD.

Cayley cubic 4pqr − (p + q + r − 1)2 = 0 for regular tetrahedron
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For generalization of the S–W locus in d-dimensional
projective-metric space, see [Pech, J. of Geometry, to appear]
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Extension of S–W theorem on skew quadrilaterals
The following is generalization of S–W theorem on skew
quadrilaterals [Pech 2005]:

Theorem 1
Let K , L,M,N be orthogonal projections of a point P onto the
sides AB, BC , CD, AD of a skew quadrilateral ABCD respectively.
Let A = (0, 0, 0), B = (a, 0, 0), C = (b, c , 0) and D = (d , e, f ).
Then the locus of P = (p, q, r) such that the tetrahedron KLMN
has a constant volume s is a cubic surface F

F := cfH + sR = 0, (1)

where

R = 6(d2 + e2 + f 2)((b − d)2 + (c − e)2 + f 2)((a− b)2 + c2)

and
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Extension of S–W theorem on skew quadrilaterals

H = p3(c2d(d−a)−(be2 +bf 2−2cde)(a−b))−p2qc(ae(c−e)+
f 2(a−2b))−p2rcf (ac−2cd−2e(a−b)) +pq2(c2(d2 + f 2−ad) +
e(2cd−be)(a−b))+2pqrf (cd−be)(a−b)−pr2f 2(ab−b2−c2)−
q3ace(c−e)−q2racf (c−2e)+qr2acf 2+p2(cd(a2(c−2e)+e(ab+
b2+c2))+(e2+f 2)(ab+b2+c2)(a−b)−c(e2+f 2+d2)(cd+ae−
be)) +pq(cd(d−a)(ab−b2−c2−ad +bd)−de(a−b)(b2 +c2) +
a2ce(c− e)− cf 2(ab+b2 + c2− a2) + (a−b)((e2 + f 2)(be− cd) +
bd2e))−prf ((ab−b2−c2)(bd +ce−d2−e2− f 2)−ac(2be+ac−
2cd−2ae))+q2ae(c(bd+ce−d2−e2−f 2)−(c−e)(ab−b2−c2))+
qra(cf (bd+ce−d2−e2−f 2)−f (c−2e)(ab−b2−c2))+r2af 2(ab−
b2−c2)−pa(cd(c(ad−d2+ce)−(be+de)(a−b))+(e2+f 2)((b2+
c2−ce)(a−b)−c2d))+(qe+rf )a(bd+ce−d2−e2−f 2)(ab−b2−c2).
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Extension of S–W theorem on skew quadrilaterals

Outline of the proof: Let A = (0, 0, 0), B = (a, 0, 0), C = (b, c , 0)
and D = (d , e, f ). Suppose that acf 6= 0 since otherwise the
quadrilateral is planar. Denote K = (k1, 0, 0), L = (l1, l2, 0),
M = (m1,m2,m3), N = (n1, n2, n3) and P = (p, q, r).
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Extension of S–W theorem on skew quadrilaterals

Then

I PK ⊥ AB ⇔ h1 := a(p − k1) = 0,

I L ∈ BC ⇔ h2 := l2(b − a)− c(l1 − a) = 0,

I PL ⊥ BC ⇔ h3 := (p − l1)(b − a) + c(q − l2) = 0,

I M ∈ CD ⇔ h4 := (d − b)(m2 − c)− (e − c)(m1 − b) = 0,

h5 := (e − c)m3 − (m2 − c)f = 0,

h6 := (m1 − b)f −m3(d − b) = 0,
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Extension of S–W theorem on skew quadrilaterals

I PM ⊥ CD ⇔

h7 := (p −m1)(d − b) + (q −m2)(e − c) + (r −m3)f = 0,

I N ∈ DA⇔ h8 := dn2 − en1 = 0, h9 := dn3 − fn1 = 0,

h10 := fn2 − en3 = 0,

I PN ⊥ DA⇔ h11 := (p − n1)d + (q − n2)e + (r − n3)f = 0,

I Volume KLMN = s ⇔

h12 :=

∣∣∣∣∣∣∣∣
k1, 0, 0, 1
l1, l2, 0 1
m1, m2, m3, 1
n1, n2, n3, 1

∣∣∣∣∣∣∣∣− 6s = 0.
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Extension of S–W theorem on skew quadrilaterals

I Elimination of k1, . . . , n3 in the system h1 = 0, h2 = 0, . . . ,
h12 = 0 yields the equation (1).1

I We see that F = 0 describes a cubic surface.

I Hence P ∈ F is the necessary condition for the feet
K , L,M,N to be coplanar.

Similarly, with the use of the program Epsilon, we can prove that
P ∈ F is the sufficient condition [Pech 2015]. �

1We use software CoCoA which is freely distributed at
http://cocoa.dima.unige.it and Epsilon library which is freely distributed
at http://www-calfor.lip6.fr/∼wang/epsilon/
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Extension of S–W theorem on skew quadrilaterals

We can also proceed in another way to find F . Expressing
k1, . . . , n3 from the system above we get:

k1 = p,

l1 = (p(a− b)2 + qc(b − a) + ac2)/((a− b)2 + c2),

l2 = (pc(b − a) + c2q + ac(a− b))/((a− b)2 + c2),

m1 = (p(b − d)2 + q(b − d)(c − e) + rf (d − b) + c(cd − be −
de) + b(e2 + f 2))/((b − d)2 + (c − e)2 + f 2),

m2 =
(p(b−d)(c−e)+q(c−e)2+fr(e−c)−bcd+cd2+b2e−bde+cf 2)/
((b − d)2 + (c − e)2 + f 2),

m3 = (pf (d − b) + qf (e − c) + f 2r + f (b2 + c2 − bd − ce))/
((b − d)2 + (c − e)2 + f 2),
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Extension of S–W theorem on skew quadrilaterals

n1 = (d2p + deq + dfr)/(d2 + e2 + f 2),

n2 = (dep + e2q + efr)/(d2 + e2 + f 2),

n3 = (dfp + efq + f 2r)/(d2 + e2 + f 2).

Substitution for k1, l1, l2, . . . , n3 into

∣∣∣∣∣∣
l1 − k1, l2, 0
m1 − k1, m2, m3

n1 − k1, n2, n3

∣∣∣∣∣∣ = 0

gives H in the basic formula (1) in the shorter form
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Extension of S–W theorem on skew quadrilaterals

H = c(dp+eq+ fr)(p(d−b)+(e−c)q+ fr−(d−b)d−(e−c)e−
f 2)(cp+q(a−b)−ac)+(p(b−a)+cq+a(a−b))((−p(e2+f 2)+qde+
rdf )(p(d−b)+q(e−c)+rf +b2+c2−bd−ce)+(pd+qe+rf )(p((c−
e)2+f 2)−q(b−d)(c−e)−rf (d−b)−c(cd−be−de)−b(e2+f 2))).

Later we will express F even in the more concise form.

In the following suppose that s = 0 in the formula

F = cfH + sR,

i.e. K , L,M,N are coplanar. Then F = H, since cf 6= 0.
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Properties of the S–W locus

In this section some properties of the cubic which is associated
with a skew quadrilateral ABCD are investigated.

Particularly the following properties of the cubic H are studied:

I decomposability,

I structure of lines on the cubic,

I singular cases.
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Properties of the locus — decomposability

The next theorem is on decomposability of the S–W locus.

Theorem 2
The cubic surface which is associate with a skew quadrilateral
ABCD is decomposable iff two pairs of sides — either adjacent or
opposite — of ABCD are of equal lengths p, q.
If p 6= q the cubic decomposes into a plane and a one–sheet
hyperboloid,
if p = q, i.e., if ABCD is equilateral, the cubic decomposes into
three mutually orthogonal planes.

In the next figures you shall see horizontal views of quadrilaterals
ABCD when the cubic is decomposable.
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Properties of the locus — decomposability

Horizontal view of ABCD onto the plane parallel to diagonals AC
and BD — two deltoids and a parallelogram.

Rhombus — all sides of ABCD are of equal lengths.
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Properties of the S–W locus — decomposability

Example 1

For a = 1, b = 0, c = 1, d = 0, e = 1, f = 1

we get the cubic

(pq − q2 − pr − qr + q + r)(p + r − 1) = 0,

which decomposes into a plane and hyperboloid.
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Properties of the S–W locus — decomposability

Note that two pairs of opposite sides of ABCD are of equal lengths.
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Properties of the S–W locus — structure of lines

The well-known Salmon–Cayley theorem states that a smooth
cubic surface over algebraic closed field contains exactly 27 lines.
In the following the number of real lines which lie on the cubic H is
investigated.

Planes A1,A2,A3,A4,A5,A6,A7 and A8 which are perpendicular to
the sides of ABCD and pass through its vertices are crucial for
investigation of the structure of lines on the cubic:

A1 : A1 ⊥ DA, D ∈ A1, A5 : A5 ⊥ BC , B ∈ A5,

A2 : A2 ⊥ DA, A ∈ A2, A6 : A6 ⊥ BC , C ∈ A6,

A3 : A3 ⊥ CD, C ∈ A3, A7 : A7 ⊥ AB, A ∈ A7,

A4 : A4 ⊥ CD, D ∈ A4, A8 : A8 ⊥ AB, B ∈ A8.

The planes belong to the system of tritangent planes which
intersect the cubic H in three lines.
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Properties of the S–W locus — structure of lines

We can easily verify that it (surprisingly) holds

H = A1A3A5A7 − A2A4A6A8, (2)

or

H = (dp+eq+fr−d2−e2−f 2)((d−b)p+(e−c)q+fr−(d−b)b−
(e−c)c)((b−a)p+cq−(b−a)a)p−(dp+eq+ fr)((d−b)p+(e−
c)q+fr−(d−b)d−(e−c)e−f 2)((b−a)p+cq−(b−a)b−c2)(p−a).

This is the most concise form of H that I have found.

The importance of (2) appears by searching for lines lying on the
cubic. Namely from H = 0 and (2) we get that the line Ai ∩ Aj ,
i = 1, 3, 5, 7, j = 2, 4, 6, 8 belongs to H.
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Properties of the S–W locus — structure of lines

From (2) we obtain the following 12 lines which belong to the
cubic surface:

a = A2 ∩ A7, b = A8 ∩ A5, c = A6 ∩ A3, d = A4 ∩ A1,

e = A2 ∩ A5, f = A8 ∩ A3, g = A6 ∩ A1, h = A4 ∩ A7,

i = A7 ∩ A6, j = A2 ∩ A3, k = A8 ∩ A1, l = A5 ∩ A4.

Another 6 tritangent planes given by pairs of parallel lines:

A9 = a ∪ k, A10 = b ∪ i , A11 = c ∪ l ,

A12 = d ∪ j , A13 = e ∪ g , A14 = f ∪ h.
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Properties of the S–W locus — structure of lines

Denote:

C1 = ab − bd − ce,

C2 = b2 + c2 − ab − bd − ce,

C3 = d2 + e2 + f 2 − a2 + ab − bd − ce.

If C1 6= 0,C2 6= 0,C3 6= 0 then we obtain another three lines m, n, o

m = A10 ∩ A12, n = A9 ∩ A11, o = A13 ∩ A14

which belong to the cubic H.
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It holds:

a) The lines m, n coincide ⇔ C1 = 0 and C2 6= 0,C3 6= 0.

b) The lines m, o coincide ⇔ C2 = 0 and C1 6= 0,C3 6= 0.

c) The lines n, o coincide ⇔ C3 = 0 and C1 6= 0,C2 6= 0.

Finally we add the plane

A15 = m ∪ n ∪ o.

Note that A15 passes through the center S of the circumsphere of
ABCD.
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Properties of the S–W locus — structure of lines

Example 2

For a = 1, b = 1, c = 1, d = 0, e = 0, f = 1 we get the cubic

p2q + pq2 − p2r − q2r + pr2 + qr2 − 2pq − r2 + r = 0

which contains 15 lines.
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Properties of the S–W locus — structure of lines

Cubic p2q + pq2 − p2r − q2r + pr2 + qr2 − 2pq − r2 + r = 0
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Properties of the S–W locus — structure of lines

The planes above yield the following 10 canonical forms2 of the
cubic H:

H = A2A4A10 + A5A7A12, H = A1A3A10 + A6A8A12,

H = A4A8A13 + A1A5A14, H = A3A7A13 + A2A6A14

H = A1A7A11 + A4A6A9, H = A2A8A11 + A3A5A9,

H = A1A2A15 + A9A12A13, H = A3A4A15 + A11A12A14,

H = A5A6A15 + A10A11A13, H = A7A8A15 + A9A10A14.

2The cubic H is expressed in a canonical form if H = abc + def , where
a, b, c, d , e, f are linear factors.
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27 lines on the cubic

So far we have investigated cubics H which contain 15 lines. Is
there a case when a cubic H contains 27 real lines?

The answer gives the following theorem:

Theorem 3
Let C1 6= 0, C2 6= 0, C3 6= 0. Then a cubic H contains exactly 27
distinct real lines iff

(C1C2 − C2C3 + C3C1)2 − 4a2C1C2C3 > 0 . (3)
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27 lines on the cubic

Example 3

For a skew quadrilateral a = 1, b = −2, c = 1, d = 2, e = −1,
f = 1 we get the cubic

2p3 − 3p2q − 3pq2 + 2q3 − 3p2r − 3q2r + 7pr2 + qr2 + 24p2 +
24pq − 3q2 − 74pr + 10qr − 7r2 − 26p − 77q + 77r = 0.

It holds C1 = 3,C2 = 12,C3 = 8

and

(C1C2 − C2C3 + C3C1)2 − 4a2C1C2C3 = 144 > 0 .

Then by the Theorem 3 there exist 27 real lines on the cubic.
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27 lines on the cubic

The cubic 2p3 − 3p2q − 3pq2 + 2q3 − 3p2r − 3q2r + 7pr2 + qr2 +
24p2 + 24pq − 3q2 − 74pr + 10qr − 7r2 − 26p − 77q + 77r = 0
contains 27 real lines
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27 lines on the cubic
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27 lines on the cubic
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27 lines on the cubic

Example 2 revisited

For a = 1, b = 1, c = 1, d = 0, e = 0, f = 1 we get the cubic

p2q + pq2 − p2r − q2r + pr2 + qr2 − 2pq − r2 + r = 0

with C1 = C2 = C3 = 1, and

(C1C2 − C2C3 + C3C1)2 − 4a2C1C2C3 = −3.

Thus the cubic contains exactly 15 real lines.
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27 lines on the cubic
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Properties of the S–W locus — singular cases

Theorem 4
Let C1 = 0, C2C3 6= 0 or C2 = 0, C1C3 6= 0 or C3 = 0, C1C2 6= 0.
Then H possesses 2 singular points.

Outline of the proof: Let C1 = 0, C2 6= 0, C3 6= 0. Then the lines
m and n coincide and the planes A9,A10,A11 and A12 have the
common line m = n.

Since A9 = a ∪ k , A10 = b ∪ i , A11 = c ∪ l and A12 = d ∪ j , then
the lines a, k , b, i , c , l , d , j intersect the common line m = n. It is
easy to verify that the lines a, c , i , j ,m meet at

S1 =
[
0,

b2 + c2 − ab

c
,
e(ab − b2 − c2)

cf

]
,
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Properties of the S–W locus — singular cases

and the lines b, d , k , l ,m at

S2 =
[
a, 0,

d2 + e2 + f 2 − ad

f

]
.

Similarly we proceed if C2 = 0, C1C3 6= 0 or C3 = 0, C1C2 6= 0.

Remark: How to find singular points of H classically?

Solving the system

{H = 0, ∂H∂p = 0, ∂H∂q = 0, ∂H∂r = 0}

together with one condition Ci = 0, i = 1, 2, 3, is feasible in
concrete cases.

In general it does not give any result at the moment.
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Properties of the S–W locus — singular cases

Example 4

For a = 1, b = 0, c = 1, d = 0, e = 0, f = 2 we get the cubic

2p2q−2pq2+p2r+q2r−2pr2−2qr2−2p2+3pr+3qr+2r2+2p−4r = 0,

where C1 = 0, C2 = 1, C3 = 3. 2 singular points (0, 1, 0), (1, 0, 2).
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Extension of S–W theorem on skew quadrilaterals
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Extension of S–W theorem on skew quadrilaterals

Example 5

For a = 1, b = 1, c = 1/2, d = 0, e = 0, f = 1 we get the cubic

4p2q+2pq2−2p2r−2q2r +2pr2 +4qr2−5pq−3qr−2r2 +2r = 0

with

C1 = 1,C2 = 1
4 ,C3 = 1

and

(C1C2 − C2C3 + C3C1)2 − 4a2C1C2C3 = 0.
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Properties of the S–W locus — singular cases

What is geometric meaning of relations

C1 := ab − bd − ce = 0,

C2 := b2 + c2 − ab − bd − ce = 0,

C3 := d2 + e2 + f 2 − a2 + ab − bd − ce = 0 ?

It holds:

C1 = 0 ⇔ AC ⊥ BD,

C2 = 0 ⇔ (C − A) ⊥ (A+C
2 − B+D

2 ),

C3 = 0 ⇔ (D − B) ⊥ (A+C
2 − B+D

2 ).

The last two conditions mean that the line connecting the centers
of AC and BD is othogonal either to AC or to BD.
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Final remarks

I Instead of a skew quadrilateral A,B,C ,D we can study four
arbitrary lines a, b, c , d . We made first steps in searching for
the locus of P such that its orthogonal projections onto the
lines a, b, c , d are coplanar.

I The problem is quite complex, a special case is when the lines
a, b, c , d form a skew quadrilateral.

I According to the mutual position of lines a, b, c , d we get
both quadrics and cubics.
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Final remarks

I Is it possible to get all cubics?

I Which kinds of quadrics can we obtain?

I The class of cubics H which are associated with a skew
quadrilateral contains various kinds of cubics as we could see.
It seems that the class of cubics H is sufficiently rich that it
could serve as a model for demonstration of some types of
cubic surfaces.
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