Dependence of Axioms for Weak Geometries Proved Syntactically

Victor Pambuccian

Arizona State University, USA
June 29, 2016

The geometry of point-reflections and midpoints

Universal theories between \mathcal{A}^{\prime} and \mathcal{V}^{\prime}

Richer theories, challenges

The geometry of point-reflections and midpoints
Universal theories between \mathcal{A}^{\prime} and \mathcal{V}^{\prime}
Richer theories, challenges

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.

The geometry of point-reflections and midpoints
Universal theories between \mathcal{A}^{\prime} and \mathcal{V}^{\prime}
Richer theories, challenges

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$

The geometry of point-reflections and midpoints
Universal theories between \mathcal{A}^{\prime} and \mathcal{V}^{\prime}
Richer theories, challenges

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$
- (A2) $\sigma(x a)=\sigma(y a) \rightarrow x=y$

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$
- (A2) $\sigma(x a)=\sigma(y a) \rightarrow x=y$
- (A3) $\sigma(\mu(a b) a)=b$

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$
- (A2) $\sigma(x a)=\sigma(y a) \rightarrow x=y$
- (A3) $\sigma(\mu(a b) a)=b$
- (A4) $\sigma(a \sigma(a x))=x$

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$
- (A2) $\sigma(x a)=\sigma(y a) \rightarrow x=y$
- (A3) $\sigma(\mu(a b) a)=b$
- (A4) $\sigma(a \sigma(a x))=x$
- The absolute geometry of midpoint and point-reflection is the theory \mathcal{A}, axiomatized by (A 1$)-(\mathrm{A} 4)$.

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$
- (A2) $\sigma(x a)=\sigma(y a) \rightarrow x=y$
- (A3) $\sigma(\mu(a b) a)=b$
- (A4) $\sigma(a \sigma(a x))=x$
- The absolute geometry of midpoint and point-reflection is the theory \mathcal{A}, axiomatized by (A 1$)-(\mathrm{A} 4)$.
- (E) $\sigma(d \sigma(c \sigma(b a)))=\sigma(b \sigma(c \sigma(d a)))$

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$
- (A2) $\sigma(x a)=\sigma(y a) \rightarrow x=y$
- (A3) $\sigma(\mu(a b) a)=b$
- (A4) $\sigma(a \sigma(a x))=x$
- The absolute geometry of midpoint and point-reflection is the theory \mathcal{A}, axiomatized by (A1)-(A4).
- (E) $\sigma(d \sigma(c \sigma(b a)))=\sigma(b \sigma(c \sigma(d a)))$
- ($\left.\mathrm{E}^{\prime}\right) \sigma(\sigma(d c) \sigma(b a))=\sigma(\sigma(d b) \sigma(c a))$

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$
- (A2) $\sigma(x a)=\sigma(y a) \rightarrow x=y$
- (A3) $\sigma(\mu(a b) a)=b$
- (A4) $\sigma(a \sigma(a x))=x$
- The absolute geometry of midpoint and point-reflection is the theory \mathcal{A}, axiomatized by (A1)-(A4).
- (E) $\sigma(d \sigma(c \sigma(b a)))=\sigma(b \sigma(c \sigma(d a)))$
- ($\left.\mathrm{E}^{\prime}\right) \sigma(\sigma(d c) \sigma(b a))=\sigma(\sigma(d b) \sigma(c a))$
- Another equivalent form, a strengthening of (E), which states that the product of three reflections (in points a, b, and c) is a point-reflection (in point $\mu(a \sigma(c \sigma(b a))$

From absolute to affine geometry

- $\sigma(x y)$ is the reflection of y in x, and $\mu(x y)$ is the midpoint of $x y$.
- (A1) $\sigma(a a)=a$
- (A2) $\sigma(x a)=\sigma(y a) \rightarrow x=y$
- (A3) $\sigma(\mu(a b) a)=b$
- (A4) $\sigma(a \sigma(a x))=x$
- The absolute geometry of midpoint and point-reflection is the theory \mathcal{A}, axiomatized by (A1)-(A4).
- (E) $\sigma(d \sigma(c \sigma(b a)))=\sigma(b \sigma(c \sigma(d a)))$
- $\left(\mathrm{E}^{\prime}\right) \sigma(\sigma(d c) \sigma(b a))=\sigma(\sigma(d b) \sigma(c a))$
- Another equivalent form, a strengthening of (E), which states that the product of three reflections (in points a, b, and c) is a point-reflection (in point $\mu(a \sigma(c \sigma(b a))$
- $\left(\mathrm{E}^{\prime \prime}\right) \sigma(c \sigma(b \sigma(a x)))=\sigma(\mu(a \sigma(c \sigma(b a))) x)$

The geometry of point-reflections and midpoints

Complexity of axioms defining Euclideanty

- The theory obtained by adding (E) (or (E^{\prime}) or $\left(\mathrm{E}^{\prime \prime}\right)$) to \mathcal{A} is the affine theory of midpoint and point-reflection \mathcal{V}.

Complexity of axioms defining Euclideanty

- The theory obtained by adding (E) (or (E^{\prime}) or $\left(\mathrm{E}^{\prime \prime}\right)$) to \mathcal{A} is the affine theory of midpoint and point-reflection \mathcal{V}.
- \mathcal{V} was first axiomatized by D. Vakarelov (1967)

Complexity of axioms defining Euclideanty

- The theory obtained by adding (E) (or (E^{\prime}) or $\left(\mathrm{E}^{\prime \prime}\right)$) to \mathcal{A} is the affine theory of midpoint and point-reflection \mathcal{V}.
- \mathcal{V} was first axiomatized by D. Vakarelov (1967)
- \mathcal{A} was considered by Manara and Marchi (1991)

Complexity of axioms defining Euclideanty

- The theory obtained by adding (E) (or (E^{\prime}) or $\left(\mathrm{E}^{\prime \prime}\right)$) to \mathcal{A} is the affine theory of midpoint and point-reflection \mathcal{V}.
- \mathcal{V} was first axiomatized by D. Vakarelov (1967)
- \mathcal{A} was considered by Manara and Marchi (1991)
- One can replace (A2) with (A2') $\mu(a \sigma(b a))=b$. This shows that \mathcal{A} and \mathcal{V} are equational theories.

Complexity of axioms defining Euclideanty

- The theory obtained by adding (E) (or (E^{\prime}) or $\left(\mathrm{E}^{\prime \prime}\right)$) to \mathcal{A} is the affine theory of midpoint and point-reflection \mathcal{V}.
- \mathcal{V} was first axiomatized by D. Vakarelov (1967)
- \mathcal{A} was considered by Manara and Marchi (1991)
- One can replace (A2) with (A2') $\mu(a \sigma(b a))=b$. This shows that \mathcal{A} and \mathcal{V} are equational theories.
- Conjecture: There is no axiom system for \mathcal{V} all of whose axioms are at most 3 -variable statements.

Complexity of axioms defining Euclideanty

- The theory obtained by adding (E) (or (E^{\prime}) or $\left.\left(\mathrm{E}^{\prime \prime}\right)\right)$ to \mathcal{A} is the affine theory of midpoint and point-reflection \mathcal{V}.
- \mathcal{V} was first axiomatized by D. Vakarelov (1967)
- \mathcal{A} was considered by Manara and Marchi (1991)
- One can replace (A2) with (A2') $\mu(a \sigma(b a))=b$. This shows that \mathcal{A} and \mathcal{V} are equational theories.
- Conjecture: There is no axiom system for \mathcal{V} all of whose axioms are at most 3 -variable statements.
- Work done with Jesse Alama and his aggregate of automatic theorem provers and finite counterexample searchers Tipi.

The geometry of point-reflections and midpoints

The absolute geometry of midpoint, point-reflection, and collinearity

- Adding to \mathcal{A} the ternary relation L and the axioms

The absolute geometry of midpoint, point-reflection, and collinearity

- Adding to \mathcal{A} the ternary relation L and the axioms
- (A8) $a \neq b \wedge L(a b c) \wedge L(a b d) \rightarrow L(a c d)$

The absolute geometry of midpoint, point-reflection, and collinearity

- Adding to \mathcal{A} the ternary relation L and the axioms
- (A8) $a \neq b \wedge L(a b c) \wedge L(a b d) \rightarrow L(a c d)$
- (A9) $L(a b c) \rightarrow L(b a c)$

The absolute geometry of midpoint, point-reflection, and collinearity

- Adding to \mathcal{A} the ternary relation L and the axioms
- (A8) $a \neq b \wedge L(a b c) \wedge L(a b d) \rightarrow L(a c d)$
- (A9) $L(a b c) \rightarrow L(b a c)$
- (A10) $L(a b \sigma(a b))$

The absolute geometry of midpoint, point-reflection, and collinearity

- Adding to \mathcal{A} the ternary relation L and the axioms
- (A8) $a \neq b \wedge L(a b c) \wedge L(a b d) \rightarrow L(a c d)$
- (A9) $L(a b c) \rightarrow L(b a c)$
- (A10) $L(a b \sigma(a b))$
- (A11) $L(a b c) \rightarrow L(\sigma(x a) \sigma(x b) \sigma(x c))$

The absolute geometry of midpoint, point-reflection, and collinearity

- Adding to \mathcal{A} the ternary relation L and the axioms
- (A8) $a \neq b \wedge L(a b c) \wedge L(a b d) \rightarrow L(a c d)$
- (A9) $L(a b c) \rightarrow L(b a c)$
- (A10) $L(a b \sigma(a b))$
- (A11) $L(a b c) \rightarrow L(\sigma(x a) \sigma(x b) \sigma(x c))$
- we get \mathcal{A}^{\prime}, the universal absolute theory of σ, μ, and L.

The geometry of point-reflections and midpoints
Universal theories between \mathcal{A}^{\prime} and \mathcal{V}^{\prime} Richer theories, challenges

An axiom not in \mathcal{A}

- (A16) $\mu(\sigma(o a) \sigma(o b))=\sigma(o \mu(a b)))$

An axiom not in \mathcal{A}

- (A16) $\mu(\sigma(o a) \sigma(o b))=\sigma(o \mu(a b)))$
- (A16) is independent of \mathcal{A} (7 element model)

An axiom not in \mathcal{A}

- (A16) $\mu(\sigma(o a) \sigma(o b))=\sigma(o \mu(a b)))$
- (A16) is independent of \mathcal{A} (7 element model)
- (A1) can be dervied from (A3) and (A16) (in 22 lines)

An axiom not in \mathcal{A}

- (A16) $\mu(\sigma(o a) \sigma(o b))=\sigma(o \mu(a b)))$
- (A16) is independent of \mathcal{A} (7 element model)
- (A1) can be dervied from (A3) and (A16) (in 22 lines)
- $\mathcal{A}_{1}=\mathcal{A}+(\mathrm{A} 16)$ is thus axiomatized by (A2), (A3), (A4), (A16).

The geometry of point-reflections and midpoints

Intermediate geometries

- The axiom of the Euclidean metric, which states that there is a rectangle, can be equivalently expressed by stating that in any triangle the midline is congruent to half of the basis. In the language of μ, this means:

The geometry of point-reflections and midpoints

Intermediate geometries

- The axiom of the Euclidean metric, which states that there is a rectangle, can be equivalently expressed by stating that in any triangle the midline is congruent to half of the basis. In the language of μ, this means:
- (A17) $\mu(\mu(a b) \mu(c b))=\mu(b \mu(a c))$.

Intermediate geometries

- The axiom of the Euclidean metric, which states that there is a rectangle, can be equivalently expressed by stating that in any triangle the midline is congruent to half of the basis. In the language of μ, this means:
- (A17) $\mu(\mu(a b) \mu(c b))=\mu(b \mu(a c))$.
- $\mu(x x)=x$ can be derived from (A3) and (A17) (19 lines of proof)

Intermediate geometries

- The axiom of the Euclidean metric, which states that there is a rectangle, can be equivalently expressed by stating that in any triangle the midline is congruent to half of the basis. In the language of μ, this means:
- (A17) $\mu(\mu(a b) \mu(c b))=\mu(b \mu(a c))$.
- $\mu(x x)=x$ can be derived from (A3) and (A17) (19 lines of proof)
- $\mathcal{A}+(A 17) \vdash(A 16)$ (25 lines of proof)

Intermediate geometries

- The axiom of the Euclidean metric, which states that there is a rectangle, can be equivalently expressed by stating that in any triangle the midline is congruent to half of the basis. In the language of μ, this means:
- (A17) $\mu(\mu(a b) \mu(c b))=\mu(b \mu(a c))$.
- $\mu(x x)=x$ can be derived from (A3) and (A17) (19 lines of proof)
- $\mathcal{A}+(A 17) \vdash(A 16)$ (25 lines of proof)
- Thus (A2), (A3), and (A17) axiomatize the theory $\mathcal{A}_{2}=\mathcal{A}+(A 17)$

Intermediate geometries

- The axiom of the Euclidean metric, which states that there is a rectangle, can be equivalently expressed by stating that in any triangle the midline is congruent to half of the basis. In the language of μ, this means:
- (A17) $\mu(\mu(a b) \mu(c b))=\mu(b \mu(a c))$.
- $\mu(x x)=x$ can be derived from (A3) and (A17) (19 lines of proof)
- $\mathcal{A}+(A 17) \vdash(A 16)$ (25 lines of proof)
- Thus (A2), (A3), and (A17) axiomatize the theory $\mathcal{A}_{2}=\mathcal{A}+(A 17)$
- $\mathcal{A}_{1} \subsetneq \mathcal{A}_{2}$, given that the point-reflection and midpoint operations of the hyperbolic plane do satisfy \mathcal{A}_{1}, but not \mathcal{A}_{2}.

Intermediate geometries

- The axiom of the Euclidean metric, which states that there is a rectangle, can be equivalently expressed by stating that in any triangle the midline is congruent to half of the basis. In the language of μ, this means:
- (A17) $\mu(\mu(a b) \mu(c b))=\mu(b \mu(a c))$.
- $\mu(x x)=x$ can be derived from (A3) and (A17) (19 lines of proof)
- $\mathcal{A}+(A 17) \vdash(A 16)$ (25 lines of proof)
- Thus (A2), (A3), and (A17) axiomatize the theory $\mathcal{A}_{2}=\mathcal{A}+(A 17)$
- $\mathcal{A}_{1} \subsetneq \mathcal{A}_{2}$, given that the point-reflection and midpoint operations of the hyperbolic plane do satisfy \mathcal{A}_{1}, but not \mathcal{A}_{2}.
- We do not know whether $\mathcal{A}_{2} \subsetneq \mathcal{V}$, and Tipi could not help. In case our conjecture holds, the above is true, given that all axioms of \mathcal{A}_{2} are at most 3 -variable statements.

More intermediate geometries

- Another axiom that is quite likely to be equivalent to the rectangle axiom inside the theory of Friedrich Bachmann's metric planes (it is known that it does not hold for any triangle in the hyperbolic plane, as shown by O. Bottema (1958)) is the statement that if two medians of a triangle meet in a point, then that point divides each in the ratio $2: 1$ (vertex: midpoint), or, in the language of σ and μ

More intermediate geometries

- Another axiom that is quite likely to be equivalent to the rectangle axiom inside the theory of Friedrich Bachmann's metric planes (it is known that it does not hold for any triangle in the hyperbolic plane, as shown by O. Bottema (1958)) is the statement that if two medians of a triangle meet in a point, then that point divides each in the ratio $2: 1$ (vertex: midpoint), or, in the language of σ and μ
- (A18) $\sigma(\sigma(o \mu(\sigma(\sigma(o \mu(b c)) o) c)) o)=b$

More intermediate geometries

- Another axiom that is quite likely to be equivalent to the rectangle axiom inside the theory of Friedrich Bachmann's metric planes (it is known that it does not hold for any triangle in the hyperbolic plane, as shown by O. Bottema (1958)) is the statement that if two medians of a triangle meet in a point, then that point divides each in the ratio $2: 1$ (vertex: midpoint), or, in the language of σ and μ
- (A18) $\sigma(\sigma(o \mu(\sigma(\sigma(o \mu(b c)) o) c)) o)=b$
- It states that the medians from b to $\mu(a c)$ and from a to $\mu(b c)$ meet in the point o, which divides $a \mu(b c)$ and $b \mu(a c)$ in the ratio 2:1 (vertex: midpoint). Here a stands for $\sigma(\sigma(o \mu(b c)) o)$. Of course, the picturesque geometric statement we provided should be taken with a grain of salt, as there is no mention of the fact that the vertices of our triangle are not collinear.

A hierarchy of intermediate geometries

- Tipi proved that (A!8) follows from (A2), (A3), (A17). Unfortunatley, it was impossible for me to turn that into a proof that I would understand.

A hierarchy of intermediate geometries

- Tipi proved that (A!8) follows from (A2), (A3), (A17). Unfortunatley, it was impossible for me to turn that into a proof that I would understand.
$-\mathcal{A}+(\mathrm{A} 18) \nvdash(\mathrm{A} 17)$, as a 7 -element model shows. Thus

A hierarchy of intermediate geometries

- Tipi proved that (A!8) follows from (A2), (A3), (A17). Unfortunatley, it was impossible for me to turn that into a proof that I would understand.
$-\mathcal{A}+(\mathrm{A} 18) \nvdash(\mathrm{A} 17)$, as a 7 -element model shows. Thus
- with $\mathcal{A}_{3}=\mathcal{A}+(\mathrm{A} 18)$, we have $\mathcal{A} \subsetneq \mathcal{A}_{1} \subsetneq \mathcal{A}_{2} \subset \mathcal{V}$ and $\mathcal{A} \subsetneq \mathcal{A}_{3} \subsetneq \mathcal{A}_{2}$

The geometry of point-reflections and midpoints

Absolute statements involving collinearity

- In all metric planes, ($\mathrm{E}^{\prime \prime}$) holds if the three points a, b, and c are collinear, i. e.

Absolute statements involving collinearity

- In all metric planes, ($\mathrm{E}^{\prime \prime}$) holds if the three points a, b, and c are collinear, i. e.
- (A20) $L(a b c) \rightarrow \sigma(c \sigma(b \sigma(a x)))=\sigma(\mu(a \sigma(c \sigma(b a))) x)$

Absolute statements involving collinearity

- In all metric planes, $\left(\mathrm{E}^{\prime \prime}\right)$ holds if the three points a, b, and c are collinear, i. e.
- (A20) $L(a b c) \rightarrow \sigma(c \sigma(b \sigma(a x)))=\sigma(\mu(a \sigma(c \sigma(b a))) x)$
- is an absolute axiom that quite likely cannot be derived from $\mathcal{A}^{\prime}+$ (A16), which is why we list it as an additional axiom.

Absolute statements involving collinearity

- In all metric planes, $\left(\mathrm{E}^{\prime \prime}\right)$ holds if the three points a, b, and c are collinear, i. e.
- (A20) $L(a b c) \rightarrow \sigma(c \sigma(b \sigma(a x)))=\sigma(\mu(a \sigma(c \sigma(b a))) x)$
- is an absolute axiom that quite likely cannot be derived from $\mathcal{A}^{\prime}+$ (A16), which is why we list it as an additional axiom.
- Also true in all metric planes is the fact that if two medians of a triangle meet, then the three medians are concurrent, i. e.

Absolute statements involving collinearity

- In all metric planes, ($\mathrm{E}^{\prime \prime}$) holds if the three points a, b, and c are collinear, i. e.
- (A20) $L(a b c) \rightarrow \sigma(c \sigma(b \sigma(a x)))=\sigma(\mu(a \sigma(c \sigma(b a))) x)$
- is an absolute axiom that quite likely cannot be derived from $\mathcal{A}^{\prime}+$ (A16), which is why we list it as an additional axiom.
- Also true in all metric planes is the fact that if two medians of a triangle meet, then the three medians are concurrent, i. e.
- (A21) $L(a o \mu(b c)) \wedge L(b o \mu(a c)) \rightarrow L(\operatorname{co\mu }(a b))$

Absolute statements involving collinearity

- In all metric planes, ($\mathrm{E}^{\prime \prime}$) holds if the three points a, b, and c are collinear, i. e.
- (A20) $L(a b c) \rightarrow \sigma(c \sigma(b \sigma(a x)))=\sigma(\mu(a \sigma(c \sigma(b a))) x)$
- is an absolute axiom that quite likely cannot be derived from $\mathcal{A}^{\prime}+$ (A16), which is why we list it as an additional axiom.
- Also true in all metric planes is the fact that if two medians of a triangle meet, then the three medians are concurrent, i. e.
- (A21) $L(a o \mu(b c)) \wedge L(b o \mu(a c)) \rightarrow L(\operatorname{co\mu }(a b))$
- $\mathcal{A}^{\prime+}$ denotes the theory obtained by adding (A16), (A20), and (A21) to \mathcal{A}^{\prime}. $\mathcal{A}^{\prime+}$ is the richest absolute L, σ, and μ-based universal theory we consider.

Maria Teresa Calapso's axiom

- An axiom that can be stated using L and μ, and which is easily seen to follow from (A8)-A(10) and $A(17)$ (first considered by M. T. Calapso (1971), and shown to be equivalent to the rectangle axiom inside the theory of metric planes by R. Struve and V. Pambuccian (2009)) states that the vertex a, the midpoint of the opposite side $\mu(b c)$, and the midpoint of the midline $\mu(a b) \mu(a c)$ are collinear, i. e.

Maria Teresa Calapso's axiom

- An axiom that can be stated using L and μ, and which is easily seen to follow from (A8)-A(10) and $A(17)$ (first considered by M. T. Calapso (1971), and shown to be equivalent to the rectangle axiom inside the theory of metric planes by R. Struve and V. Pambuccian (2009)) states that the vertex a, the midpoint of the opposite side $\mu(b c)$, and the midpoint of the midline $\mu(a b) \mu(a c)$ are collinear, i. e.
- (A22) $L(a \mu(b c) \mu(\mu(a b) \mu(a c)))$

Maria Teresa Calapso's axiom

- An axiom that can be stated using L and μ, and which is easily seen to follow from (A8)-A(10) and $A(17)$ (first considered by M. T. Calapso (1971), and shown to be equivalent to the rectangle axiom inside the theory of metric planes by R. Struve and V. Pambuccian (2009)) states that the vertex a, the midpoint of the opposite side $\mu(b c)$, and the midpoint of the midline $\mu(a b) \mu(a c)$ are collinear, i. e.
- (A22) $L(a \mu(b c) \mu(\mu(a b) \mu(a c)))$
- It is clear that (A22) is not in $\mathcal{A}^{\prime+}$, given that the the hyperbolic plane with the usual point-reflection, midpoint, and collinearity notions is a model of \mathcal{A}^{\prime}, but (A22) holds only for isosceles triangles.

The geometry of point-reflections and midpoints
Universal theories between \mathcal{A}^{\prime} and \mathcal{V}^{\prime}
Richer theories, challenges

Surprising independence

- $\mathcal{A}^{\prime}+(\mathrm{A} 22) \nvdash(\mathrm{A} 18)$ (7-element model)

The geometry of point-reflections and midpoints
Universal theories between \mathcal{A}^{\prime} and \mathcal{V}^{\prime}
Richer theories, challenges

Surprising independence

- $\mathcal{A}^{\prime}+(\mathrm{A} 22) \nvdash(\mathrm{A} 18)$ (7-element model)
- $\mathcal{A}^{\prime}+(\mathrm{A} 22)+(\mathrm{A} 18) \nvdash(\mathrm{E})(7$-element model)

Equivalences to be proved synthetically

- Pambuccian (2016): The Erdős-Trost problem (Of the four triangles formed by three points on the sides of a triangle, one of the corner triangles has always the least area) holds in all ordered translation planes.

Equivalences to be proved synthetically

- Pambuccian (2016): The Erdős-Trost problem (Of the four triangles formed by three points on the sides of a triangle, one of the corner triangles has always the least area) holds in all ordered translation planes.
- Barbilian (1936): "The segments $P A, P B, P C$, joining a point P with the vertices of an equilateral triangle satisfy the generalized triangle inequality" \Leftrightarrow "Sum of angles in a triangle is $\leq 180^{\circ}{ }^{\prime \prime}$

Lagrange (1806)

- In a proof of the Euclidean parallel postulate, in a paper read on 3 February 1806 at the Institut de France, Lagrange introduces an axiom which states that "If a and b are two parallels from P to g, then the reflection of a in b is parallel to g as well."

The geometry of point-reflections and midpoints
Universal theories between \mathcal{A}^{\prime} and \mathcal{V}^{\prime}
Richer theories, challenges

An axiomatic look at Lagrange

- Framework: Hilbert's plane absolute geometry.

An axiomatic look at Lagrange

- Framework: Hilbert's plane absolute geometry.
- Question: Which statements are equivalent to Lagrange's axiom?

An axiomatic look at Lagrange

- Framework: Hilbert's plane absolute geometry.
- Question: Which statements are equivalent to Lagrange's axiom?
- Answer (Pambuccian (2009)): Bachmann's Lotschnittaxiom, which states that "The perpendiculars on the sides a right angle always intersect."

An axiomatic look at Lagrange

- Framework: Hilbert's plane absolute geometry.
- Question: Which statements are equivalent to Lagrange's axiom?
- Answer (Pambuccian (2009)): Bachmann's Lotschnittaxiom, which states that "The perpendiculars on the sides a right angle always intersect."
- Bachmann (1964) found another statement equivalent to the Lotschnittaxiom: "Through any point inside a right angle one can draw a line that intersects both sides of that angle."

An axiomatic look at Lagrange

- Framework: Hilbert's plane absolute geometry.
- Question: Which statements are equivalent to Lagrange's axiom?
- Answer (Pambuccian (2009)): Bachmann's Lotschnittaxiom, which states that "The perpendiculars on the sides a right angle always intersect."
- Bachmann (1964) found another statement equivalent to the Lotschnittaxiom: "Through any point inside a right angle one can draw a line that intersects both sides of that angle."
- Pambuccian (1994), the universal statement: "In an isosceles triangle with base angles of 45°, the altitude to the base is smaller than the base."

Lagrange's axiom and the Euclidean parallel postulate

- Pambuccian (2017), yet another equivalent of the Lotschnittaxiom: "The convex region bounded by a parabola, does not contain a complete line."

Lagrange's axiom and the Euclidean parallel postulate

- Pambuccian (2017), yet another equivalent of the Lotschnittaxiom: "The convex region bounded by a parabola, does not contain a complete line."
- J. F. Lorenz (1791), an equivalent of the Euclidean parallel postulate: "Through every point inside any angle there is a line intersecting the sides of the angle."

Lagrange's axiom and the Euclidean parallel postulate

- Pambuccian (2017), yet another equivalent of the Lotschnittaxiom: "The convex region bounded by a parabola, does not contain a complete line."
- J. F. Lorenz (1791), an equivalent of the Euclidean parallel postulate: "Through every point inside any angle there is a line intersecting the sides of the angle."
- Bachmann (1964): The Lotschnittaxiom (and thus Lagrange's axiom) is strictly weaker than the rectangle axiom (which states that there exists a rectangle).

Lagrange's axiom and the Euclidean parallel postulate

- Pambuccian (2017), yet another equivalent of the Lotschnittaxiom: "The convex region bounded by a parabola, does not contain a complete line."
- J. F. Lorenz (1791), an equivalent of the Euclidean parallel postulate: "Through every point inside any angle there is a line intersecting the sides of the angle."
- Bachmann (1964): The Lotschnittaxiom (and thus Lagrange's axiom) is strictly weaker than the rectangle axiom (which states that there exists a rectangle).
- Dehn (1900): The rectangle axiom is strictly weaker than the Euclidean parallel postulate.

The missing link between Lagrange's axiom and the Euclidean parallel postulate

- The missing link between Lagrange's axiom and the Euclidean parallel postulate. is Aristotle's axiom, which states that the length of the perpendicular sgements drawn from one leg of an angle to the other, grow without upper bound.

The missing link between Lagrange's axiom and the Euclidean parallel postulate

- The missing link between Lagrange's axiom and the Euclidean parallel postulate. is Aristotle's axiom, which states that the length of the perpendicular sgements drawn from one leg of an angle to the other, grow without upper bound.
- Proof (Pambuccian(1994)) is not synthetic, as it uses Pejas's 1961 algebraic description of models of Hilbert's plane absolute geometry.

Szmielew's proof of the Pasch axiom from the Circle Axiom

- Is not synthetic. Thus one does not show how to construct the needed intersection point based on the opertaions present in her axiomatization: segmentntransport, line-circle intersection, line intersection.

