From Hilbert to Tarski

Gabriel Braun Pierre Boutry Julien Narboux

University of Strasbourg - ICube - CNRS

ADG 2016, Strasbourg

The project GeoCoq

A library of machine checked proofs in geometry.

Aimed Applications:

- Education
- Proof of computational geometry algorithms

Exercises

Curriculum 1

・ロト ・ 四ト ・ ヨト ・ ヨト

Foundations of geometry

Braun-Boutry-Narboux (Unistra)

イロト イ団ト イヨト イヨ

• Synthetic approach: geometric objects and axioms about them.

- Synthetic approach: geometric objects and axioms about them.
 - Euclid

Euclid (325 av. J.-C. - 265 av. J.-C.)

э

- Synthetic approach: geometric objects and axioms about them.
 - Euclid

Euclide.

イロト イ理ト イヨト イヨト

Les éléments. Presses Universitaires de France, 1998. Traduit par Bernard Vitrac.

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert

David Hilbert (1862 - 1943)

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert

David Hilbert.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Foundations of Geometry (Grundlagen der Geometrie). Open Court, La Salle, Illinois, 1960. Second English edition, translated from the tenth German edition by Leo Unger. Original publication date, 1899.

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

Alfred Tarski (1901 - 1983)

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

Metamathematische Methoden in der Geometrie

Mt 167 Abbildungen

Teil I: Ein axiomatischer Aufbau der euklidischen Geometrie von W. Schwebikuse, W. Smilter und A. Taski

Teil II: Metamathematische Betrachtungen von W. Schwichlauser

Springer-Verlag Berlin Heidelberg New York Tokyo 1983

Wolfram Schwabhäuser, Wanda Szmielew, and Alfred Tarski.

Metamathematische Methoden in der Geometrie. Springer-Verlag, Berlin, 1983.

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski
- Analytic approach: a field 𝔅 is assumed and the space is defined as 𝔅ⁿ.

René Descartes.

La Géométrie. Leydle, 1637.

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski
- Analytic approach: a field 𝔽 is assumed and the space is defined as 𝔽ⁿ.
- Mixed analytic/synthetic approach: existence of a field and geometric axioms.

∃ >

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski
- Analytic approach: a field 𝔽 is assumed and the space is defined as 𝔽ⁿ.
- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
 - Birkhoff

George David Birkhoff (1884 - 1944)

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski
- Analytic approach: a field 𝔅 is assumed and the space is defined as 𝔅ⁿ.
- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
 - Birkhoff

George David Birkhoff.

A set of postulates for plane geometry (based on scale and protractors). *Annals of Mathematics*, 33, 1932.

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski
- Analytic approach: a field 𝔅 is assumed and the space is defined as 𝔅ⁿ.
- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
 - Birkhoff
- Erlangen program: a geometry is defined as a space of objects and a group of transformations acting on it.

< ∃ ►

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski
- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
 - Birkhoff
- Erlangen program: a geometry is defined as a space of objects and a group of transformations acting on it.

Felix Klein (1849 - 1925)

→ ∃ →

- Synthetic approach: geometric objects and axioms about them.
 - Euclid
 - Hilbert
 - Tarski
- Analytic approach: a field 𝔽 is assumed and the space is defined as 𝔽ⁿ.
- Mixed analytic/synthetic approach: existence of a field and geometric axioms.
 - Birkhoff
- Erlangen program: a geometry is defined as a space of objects and a group of transformations acting on it.

Felix C. Klein.

< 47 ▶

.

A comparative review of recent researches in geometry, 1872.

Tarski's Euclidean 2D *Chapters* 1-8

Mechanical Theorem Proving in Tarski's geometry, ADG 2006

イロト イ団ト イヨト イヨト

Mechanical Theorem Proving in Tarski's geometry, ADG 2006 From Tarski to Hilbert, ADG 2012

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Previous work

Mechanical Theorem Proving in Tarski's geometry, ADG 2006 From Tarski to Hilbert, ADG 2012 From Tarski to Descartes, SCSS 2016

Previous work

Mechanical Theorem Proving in Tarski's geometry, ADG 2006 From Tarski to Hilbert, ADG 2012 From Tarski to Descartes, SCSS 2016

Previous work

Mechanical Theorem Proving in Tarski's geometry, ADG 2006 From Tarski to Hilbert, ADG 2012 From Tarski to Descartes, SCSS 2016 From Hilbert to Tarski, ADG 2016

- Formalization of Hilbert's Foundations of Geometry: Isabelle/HOL Meikle and Fleuriot Isabelle/HOL and HOL-Light Scott and Fleuriot HOL-Light Richter
- Formalization of Tarski's Geometry:

Isabelle/HOL Petrović, Makarios (Euclidean and non-Euclidean model)

- HOL-Light Richter
- Other formalizations of geometry in Coq: Duprat, Guilhot

The problem

What are Hilbert's axioms?

- There are ten editions of the Foundations of Geometry.
- Hilbert's axioms are expressed in natural language: there is room for interpretation.

How to be sure that our formalization of the axioms is fine?

- The axioms are not contradictory (there is a model): our ADG 2012 paper.
- There are enough axioms to capture a set of geometric facts (descriptively complete): this presentation.

The usual argument

Tarski's axioms A1-A10

Hilbert's axioms Group I-IV

are bi-interpretable with the theory of Pythagorean ordered field.

are bi-interpretable with the theory of Pythagorean ordered field.

With this approach, the formalizations of both Hilbert's and Tarski-Schwabhäuser-Szmielew books are needed. This argument tells nothing about the neutral geometry $(A_1 - A_9)$.

Our approach

From Tarski to Hilbert:

From Hilbert to Tarski:

- an intermediate pier (*i.e.* an intermediate axiom system).
- two separate bridges

Overview

Braun-Boutry-Narboux (Unistra)

Overview

Braun-Boutry-Narboux (Unistra)

We separate the degenerate case of Pasch's axiom.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Allows to formalize some gaps in Euclid's Elements.

Tarski has a version expressed using betweenness and include degenerate cases:

Bet $A P C \land Bet Q B C \Rightarrow \exists X, Bet P X Q \land Bet B X A$

Hilbert has a version expressed using a disjunction and exclude the flat triangle.

Braun-Boutry-Narboux (Unistra)

Our 2012 formalization was correct but not descriptively complete.

The types of changes we made:

- Remove useless (dependent) axioms
- Add other axioms
- Rephrase some axioms
- Remove dependent types

- Given three collinear distinct points at least one of them is between the other two
- Uniqueness of segment construction
- Existence of parallel line

Hilbert does not say explicitly that:

forall A B C, BetH A B C -> A<>C

Hilbert has a binary relation between segments, we have a quaternary relation between points, so we need:

forall A B C D , CongH A B C D -> CongH A B D C

Lower Dimension Axiom:

There exists three non collinear points. Collinear := there exists a line such the three points belong to this line.

Problem

There are three non collinear points does no imply that they are distinct! There is a model of Group I-II with only one point and no lines.

Rephrased Lower Dimension Axiom:

There exists a point P_0 and line I_0 such that $P_0 \notin I_0$.

イロン イ理 とく ヨン イヨン

```
Dependent type = data + proof
```

Faithful to Hilbert's presentation, but hard to manipulate in Coq.

Example

```
Record Triple {A:Type} : Type :=
build_triple {V1 : A ;
V : A ;
V2 : A ;
Pred : V1 <> V /\ V2 <> V}.
```

Example of change of Type 4-5 A simplification

Axiom (IV-4)

Given an angle α , a half-line h emanating from a point O and given a point P, not on the line generated by h, there is a unique half-line h' emanating from O, such that the angle α' defined by (h, O, h') is congruent with α and such that every point inside α' and P are on the same side with respect to the line generated by h.

In 2012 we had "a little bit verbose" axiom III 4 for existence and uniqueness of angle construction:

aux : forall (h h1 : Hline), P1 h = P1 h1 -> P2 h1 <> P1 h; hcong 4 existence: forall a h P. ~Incid P (line of hline h) -> ~ BetH (V1 a) (V a) (V2 a) -> exists h1, (P1 h) = (P1 h1) /\ (forall CondAux : P1 h = P1 h1, CongaH a (angle (P2 h) (P1 h) (P2 h1) (conj (sym not equal (Cond h)) (aux h h1 CondAux))) /\ (forall M, ~ Incid M (line of hline h) /\ InAngleH (angle (P2 h) (P1 h) (P2 h1) (conj (sym not equal (Cond h)) (aux h h1 CondAux))) M -> same side P M (line of hline h))); hEq : relation Hline := fun h1 h2 => (P1 h1) = (P1 h2) /\ ((P2 h1) = (P2 h2) \/ BetH (P1 h1) (P2 h2) (P2 h1) \/ BetH (P1 h1) (P2 h1) (P2 h2)); hline construction a (h: Hline) P (hc:Hline) H := (P1 h) = (P1 hc) /CongaH a (angle (P2 h) (P1 h) (P2 hc) (conj (sym not equal (Cond h)) H)) / (forall M, InAngleH (angle (P2 h) (P1 h) (P2 hc) (conj (sym not equal (Cond h)) H)) M -> same side P M (line of hline h)); hcong 4 unicity : forall a h P h1 h2 HH1 HH2. "Incid P (line_of_hline h) -> " BetH (V1 a) (V a) (V2 a) -> hline construction a h P h1 HH1 -> hline construction a h P h2 HH2 -> hEg h1 h2

The concept of "inside an angle" is not necessary + remove dependent types.

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

Betweenness

Tarski's betweenness is not strict:

Definition Bet A B C := BetH A B C \setminus A = B \setminus B = C.

Congruence

Hilbert's congruence tells nothing about degenerate segments:

Definition Cong A B C D :=
 (CongH A B C D /\ A <> B /\ C <> D) \/
 (A = B /\ C = D).

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへ⊙

The not obvious axioms:

Five segments Formalization of Hilbert's book (Theorems 12, 14, 15, 16, 17, 18) + non trivial degenerate case Upper dimension Our own proof

Parallel postulate Previous work done in the context of Tarski's axioms

- We assume decidability of point equality and incidence.
- We do not assume decidability of intersection of line for the equivalence between the neutral geometries.

forall P l, Incid P l \/ ~ Incid P l; forall A B, A=B \/ ~ A=B;

Conclusion

Contributions

- We provide a formalization of Hilbert axioms with a formal proof that this version is correct and descriptively complete.
- The proof is about 5kloc of Coq.
- These results turn the GeoCoq library (a library about Tarski's geometry) into a library about foundations of geometry in general.

Conclusions

- Hilbert's axioms produce a lot of administrative work.
- It is better to keep the concepts of segments, rays and angles implicit.

Potential extensions

- Foundations based on group of transformations
- Generalization to nD

Braun-Boutry-Narboux (Unistra)

The full Coq development is available on github http://geocoq.github.io/GeoCoq/

Questions ?

Braun-Boutry-Narboux (Unistra)

From Hilbert to Tarski

ADG 2016 24 / 24