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The project GeoCoq
A library of machine checked proofs in
geometry.
Aimed Applications:

1 Education
2 Proof of computational geometry

algorithms

Curriculum 1 Curriculum 2 High Level Axioms

Exercises Exercises Algorithms

Foundations
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Foundations of geometry

Synthetic approach: geometric objects and axioms
about them.

Euclid
Hilbert
Tarski

Analytic approach: a field F is assumed and the
space is defined as Fn.

Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

Birkhoff

Erlangen program: a geometry is defined as a space
of objects and a group of transformations acting on it.
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Wanda Szmielew, and Alfred Tarski.

Metamathematische Methoden in der
Geometrie.
Springer-Verlag, Berlin, 1983.

Braun-Boutry-Narboux (Unistra) From Hilbert to Tarski ADG 2016 3 / 24



Foundations of geometry

Synthetic approach: geometric objects and axioms
about them.

Euclid
Hilbert
Tarski

Analytic approach: a field F is assumed and the
space is defined as Fn.

Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

Birkhoff

Erlangen program: a geometry is defined as a space
of objects and a group of transformations acting on it.

Braun-Boutry-Narboux (Unistra) From Hilbert to Tarski ADG 2016 3 / 24



Foundations of geometry

Synthetic approach: geometric objects and axioms
about them.

Euclid
Hilbert
Tarski

Analytic approach: a field F is assumed and the
space is defined as Fn.

Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

Birkhoff

Erlangen program: a geometry is defined as a space
of objects and a group of transformations acting on it.
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La Géométrie.
Leydle, 1637.

Braun-Boutry-Narboux (Unistra) From Hilbert to Tarski ADG 2016 3 / 24



Foundations of geometry

Synthetic approach: geometric objects and axioms
about them.

Euclid
Hilbert
Tarski

Analytic approach: a field F is assumed and the
space is defined as Fn.

Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

Birkhoff

Erlangen program: a geometry is defined as a space
of objects and a group of transformations acting on it.

Braun-Boutry-Narboux (Unistra) From Hilbert to Tarski ADG 2016 3 / 24



Foundations of geometry

Synthetic approach: geometric objects and axioms
about them.

Euclid
Hilbert
Tarski

Analytic approach: a field F is assumed and the
space is defined as Fn.

Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

Birkhoff

Erlangen program: a geometry is defined as a space
of objects and a group of transformations acting on it.

George David Birkhoff
(1884 - 1944)

Braun-Boutry-Narboux (Unistra) From Hilbert to Tarski ADG 2016 3 / 24



Foundations of geometry

Synthetic approach: geometric objects and axioms
about them.

Euclid
Hilbert
Tarski

Analytic approach: a field F is assumed and the
space is defined as Fn.

Mixed analytic/synthetic approach: existence of a
field and geometric axioms.

Birkhoff

Erlangen program: a geometry is defined as a space
of objects and a group of transformations acting on it.

George David Birkhoff.

A set of postulates for plane geometry
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Annals of Mathematics, 33, 1932.
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Related work
Formalization of foundations of geometry

Formalization of Hilbert’s Foundations of Geometry :
Isabelle/HOL Meikle and Fleuriot
Isabelle/HOL and HOL-Light Scott and Fleuriot

HOL-Light Richter
Formalization of Tarski’s Geometry:
Isabelle/HOL Petrović, Makarios (Euclidean and non-Euclidean

model)
HOL-Light Richter

Other formalizations of geometry in Coq: Duprat, Guilhot
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Motivation

The problem
What are Hilbert’s axioms?

There are ten editions of the Foundations of Geometry.
Hilbert’s axioms are expressed in natural language: there is room
for interpretation.

How to be sure that our formalization of the axioms is fine?
1 The axioms are not contradictory (there is a model): our ADG

2012 paper.
2 There are enough axioms to capture a set of geometric facts

(descriptively complete): this presentation.
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The usual argument

Tarski’s axioms A1-A10 are bi-interpretable with the theory of
Pythagorean ordered field.

Hilbert’s axioms Group I-IV are bi-interpretable with the theory of
Pythagorean ordered field.

With this approach, the formalizations of both Hilbert’s and
Tarski-Schwabhäuser-Szmielew books are needed.
This argument tells nothing about the neutral geometry (A1-A9).
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Our approach

From Tarski to Hilbert:

From Hilbert to Tarski:
an intermediate pier (i.e. an intermediate axiom system).
two separate bridges
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Overview

A1
A2
A3
A4
A5
A6

A7 (Pasch)
A8
A9

A1
A2
A3
A4
A5
A′

7
A8
A9
A14
A15

Group I
(Incidence)

Group II
(Order)

Group III
(Congruence)

Tarski’s
Neutral 2D

Hilbert’s
Plane

V

A10
(Euclid V)

Group IV
(Playfair’s)

Tarski’s
Euclidean

2D

Hilbert’s
Euclidean

2D
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The Variant

We separate the degenerate case of Pasch’s axiom.
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Pasch’s axiom

Allows to formalize some gaps in Euclid’s Elements.

bA

bQ

bC

bP

b BbX bA

bC

bP

b BbX

Tarski’s Pasch Hilbert’s Pasch

Tarski has a version expressed using betweenness and include
degenerate cases:

Bet A P C ∧ Bet Q B C ⇒ ∃X ,Bet P X Q ∧ Bet B X A

Hilbert has a version expressed using a disjunction and exclude the
flat triangle.
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A new formalization

Our 2012 formalization was correct but not descriptively complete.

The types of changes we made:
1 Remove useless (dependent) axioms
2 Add other axioms
3 Rephrase some axioms
4 Remove dependent types
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Example of change of Type 1 (Remove Axioms)

Given three collinear distinct points at least one of them is
between the other two
Uniqueness of segment construction
Existence of parallel line
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Examples of change of Type 2 (Adding Axioms)

Hilbert does not say explicitly that:

forall A B C, BetH A B C -> A<>C

Hilbert has a binary relation between segments, we have a quaternary
relation between points, so we need:

forall A B C D , CongH A B C D -> CongH A B D C
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Example of change of Type 3 (Rephrase Axiom)
Evil is in the details

Lower Dimension Axiom:
There exists three non collinear points.
Collinear := there exists a line such the three points belong to this line.

Problem
There are three non collinear points does no imply that they are
distinct! There is a model of Group I-II with only one point and no lines.

Rephrased Lower Dimension Axiom:
There exists a point P0 and line l0 such that P0 6∈ l0.
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Change of Type 4 (Remove Dependent Types)
Don’t open Pandora’s box

Dependent type = data + proof
Faithful to Hilbert’s presentation, but hard to manipulate in Coq.

Example
Record Triple {A:Type} : Type :=
build_triple {V1 : A ;
V : A ;
V2 : A ;
Pred : V1 <> V /\ V2 <> V}.

Definition angle := build_triple Point.
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Example of change of Type 4-5
A simplification

Axiom (IV-4)
Given an angle α, a half-line h emanating from a point O and given a
point P, not on the line generated by h, there is a unique half-line h′

emanating from O, such that the angle α′ defined by (h,O,h′) is
congruent with α and such that every point inside α′ and P are on the
same side with respect to the line generated by h.

α

O h

P

h′

α′ ∼= α
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Example of change of Type 4-5
A simplification

In 2012 we had “a little bit verbose” axiom III 4 for existence and
uniqueness of angle construction:
aux : forall (h h1 : Hline), P1 h = P1 h1 -> P2 h1 <> P1 h;
hcong_4_existence: forall a h P,
˜Incid P (line_of_hline h) -> ˜ BetH (V1 a)(V a)(V2 a) ->
exists h1, (P1 h) = (P1 h1) /\ (forall CondAux : P1 h = P1 h1,
CongaH a (angle (P2 h) (P1 h) (P2 h1) (conj (sym_not_equal (Cond h))
(aux h h1 CondAux))) /\
(forall M, ˜ Incid M (line_of_hline h) /\ InAngleH (angle (P2 h) (P1 h) (P2 h1)
(conj (sym_not_equal (Cond h)) (aux h h1 CondAux))) M ->
same_side P M (line_of_hline h)));
hEq : relation Hline := fun h1 h2 => (P1 h1) = (P1 h2) /\
((P2 h1) = (P2 h2) \/ BetH (P1 h1) (P2 h2) (P2 h1) \/
BetH (P1 h1) (P2 h1) (P2 h2));
hline_construction a (h: Hline) P (hc:Hline) H :=
(P1 h) = (P1 hc) /\
CongaH a (angle (P2 h) (P1 h) (P2 hc) (conj (sym_not_equal (Cond h)) H)) /\
(forall M, InAngleH (angle (P2 h) (P1 h) (P2 hc)
(conj (sym_not_equal (Cond h)) H)) M ->
same_side P M (line_of_hline h));
hcong_4_unicity : forall a h P h1 h2 HH1 HH2,
˜Incid P (line_of_hline h) -> ˜ BetH (V1 a)(V a)(V2 a) ->
hline_construction a h P h1 HH1 -> hline_construction a h P h2 HH2 ->
hEq h1 h2
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Example of change of Type 4-5
A simplification

The concept of “inside an angle” is not necessary + remove dependent
types.

hcong_4_existence :
forall A B C O X P,
˜ ColH P O X -> ˜ ColH A B C ->
exists Y, CongaH A B C X O Y /\ same_side’ P Y O X;

hcong_4_uniqueness :
forall A B C O P X Y Y’,
˜ ColH P O X -> ˜ ColH A B C ->
CongaH A B C X O Y -> CongaH A B C X O Y’ ->
same_side’ P Y O X -> same_side’ P Y’ O X ->
outH O Y Y’
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The interpretation

Betweenness
Tarski’s betweenness is not strict:

Definition Bet A B C :=
BetH A B C \/ A = B \/ B = C.

Congruence
Hilbert’s congruence tells nothing about degenerate segments:

Definition Cong A B C D :=
(CongH A B C D /\ A <> B /\ C <> D) \/
(A = B /\ C = D).
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The proof: a summary

The not obvious axioms:
Five segments Formalization of Hilbert’s book (Theorems 12, 14, 15,

16, 17, 18) + non trivial degenerate case
Upper dimension Our own proof
Parallel postulate Previous work done in the context of Tarski’s axioms
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About constructive logic

We assume decidability of point equality and incidence.
We do not assume decidability of intersection of line for the
equivalence between the neutral geometries.

forall P l, Incid P l \/ ˜ Incid P l;
forall A B, A=B \/ ˜ A=B;
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Conclusion

Contributions
We provide a formalization of Hilbert axioms with a formal proof
that this version is correct and descriptively complete.
The proof is about 5kloc of Coq.
These results turn the GeoCoq library (a library about Tarski’s
geometry) into a library about foundations of geometry in general.

Conclusions
Hilbert’s axioms produce a lot of administrative work.
It is better to keep the concepts of segments, rays and angles
implicit.

Potential extensions
Foundations based on group of transformations
Generalization to nD
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The full Coq development is available on github
http://geocoq.github.io/GeoCoq/

Questions ?
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