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Abstract

We present an algorithm to help converting expressions having
non-negative quantities (like distances) in Euclidean geometry
theorems to be usable in a complex algebraic geometry prover.
The algorithm helps in refining the output of an existing
prover, therefore it supports immediate deployment in high
level prover systems.



Introduction

I Dynamic geometry systems (DGS) + Automated theorem
proving (ATP)

I Thesis in elementary geometry theorems
I equation in variables of lengths, angles, areas or volumes

(e.g. Pythagorean theorem, Ptolemy’s theorem, Heron’s
formula)



Entering formulas in OpenGeoProver

Example (Ptolemy’s theorem)
If ABCD is convex quadrilateral inscribed in given circle k , then
AC · BD = AB · CD + BC · DA holds, i.e. product of diagonals is
equal to sum of products of opposite edges.

<statement>

<algsumsegs>

<segprod>

<segment point1="A" point2="C" />

<segment point1="B" point2="D" />

</segprod>

<segprod>

<segment point1="A" point2="B" />

<segment point1="C" point2="D" />

</segprod>

<segprod>

<segment point1="B" point2="C" />

<segment point1="D" point2="A" />

</segprod>

</algsumsegs>

</statement>



Entering formulas in Java Geometry Expert 0.80

Example (Distance between a circle’s center and its points)



Chou’s list

Chou 1987 presents a list of cases when translating statements into
unordered geometry:

I the length of a segment (which should be substituted by its
square),

I the equality of length of two segments
(a = b ⇐⇒ a− b = 0→ a2 − b2(= 0)),

I the equality of product of two segments
(a · b = c · d ⇐⇒ ab − cd = 0→ a2b2 − c2d2),

I a ratio of length of two segments (3a = 7b → 9a2 − 49b2),

I the sum of length of two segments is a third length
(a + b = c →
(a− b − c) · (a− b + c) · (a + b − c) · (a + b + c)).



The difficulty of the case a + b = c

Theorem
Let a be the length of the segment joining the free points A and
B. Define point C as an arbitrary point of this segment and let the
length of segment AC be b and that of BC be c. Now a = b + c.

Proof by using Gröbner bases, Kapur 1986, Cox 2007.

I Variables: v1, v2, v3, v4, v5, v6, a, b, c , z .

I Points: A = (v1, v2), B = (v3, v4), C = (v5, v6).
I Hypotheses equations:

I v1v4 + v3v6 + v5v2 − v1v6 − v3v2 − v5v4 = 0,
I a2 = (v1 − v3)2 + (v2 − v4)2,
I b2 = (v1 − v5)2 + (v2 − v6)2,
I c2 = (v3 − v5)2 + (v4 − v6)2.

I Denied thesis: z(a− b − c) = 1.



The difficulty of the case a + b = c

Theorem
Let a be the length of the segment joining the free points A and
B. Define point C as an arbitrary point of this segment and let the
length of segment AC be b and that of BC be c. Now a = b + c.

Proof by using Gröbner bases, Kapur 1986, Cox 2007.

I CAS input (Singular):
ring r=(0,v1,v2,v3,v4,v5),(v6,a,b,c,z),dp;

ideal i=v1*v4+v3*v6+v5*v2-v1*v6-v3*v2-v5*v4,

a^2-(v1-v3)^2-(v2-v4)^2,

b^2-(v1-v5)^2-(v2-v6)^2,

c^2-(v3-v5)^2-(v4-v6)^2,

z*(a-b-c)-1;

groebner(i);

I CAS output should be 〈1〉, but it differs.



The difficulty of the case a + b = c

Theorem
Let a be the length of the segment joining the free points A and
B. Define point C as an arbitrary point of this segment and let the
length of segment AC be b and that of BC be c. Now a = b + c.

Proof by using Gröbner bases, Kapur 1986, Cox 2007.

I Modified CAS input (Singular):
ring r=(0,v1,v2,v3,v4,v5),(v6,a,b,c,z),dp;

ideal i=v1*v4+v3*v6+v5*v2-v1*v6-v3*v2-v5*v4,

a^2-(v1-v3)^2-(v2-v4)^2,

b^2-(v1-v5)^2-(v2-v6)^2,

c^2-(v3-v5)^2-(v4-v6)^2,

z*((a-b-c)*(a-b+c)*(a+b-c)*(a+b+c))-1;

groebner(i);

I CAS output is 〈1〉.



The difficulty of the case a + b = c :
a reformalized theorem

Theorem
Let us denote by a the length of the segment AB by joining the
free points A and B. Define point C as an arbitrary point of the
line going through A,B, and let length(AC ) = b and
length(BC ) = c. Now a = b + c, unless b = a + c or c = a + b.



Degenerate and essential conditions

I Degenerate:
I a + b + c 6= 0

I Essential:
I b 6= a + c · · ·
I c 6= a + b · · ·



Minimal extended polynomial (MEP)

Given the input polynomial equation p = 0 where p is squarefree,
we define MEP(p) which will be used instead of p but with the
same role. In our example, let p = a− b − c .

>> factor(eliminate([a-b-c,a^2=A^2,b^2=B^2,c^2=C^2],

[a,b,c]))

that is, we eliminate all terms from p which are not of even powers
of a, b, c . The result is:

[(A-B-C)*(A-B+C)*(A+B-C)*(A+B+C)]



Theorems checked with the MEP approach

I Pythagorean –

I the cathetus –

I the geometric mean –

I the angle bisector –

I the intercept –

I Ceva’s –

I Menelaus’ –

I Ptolemy’s –

I Heron’s formula

Detailed list at http://tinyurl.com/adg16-formula-rewrite
(generated on a daily basis automatically from the latest source
code of the open DGS GeoGebra)

http://tinyurl.com/adg16-formula-rewrite


Entering formulas in GeoGebra 5.0.250.0



Viviani’s theorem

Theorem
Let ABC be a regular triangle and D an internal point of it. Let i ,
j and k be the distance of D from the sides of the triangle,
respectively. Then i + j + k is a constant (namely, the height m of
the triangle).



Viviani’s theorem, essential conditions

Area Equation Condition

1 i + j + k −m = 0 (thesis)
2 i − j − k + m = −(−i + j + k −m) = 0 essential
3 i − j + k −m = 0 essential
4 i + j − k −m = 0 essential
5 i − j − k −m = −(−i + j + k + m) = 0 essential
6 i − j + k + m = 0 essential
7 i + j − k + m = 0 essential

(8) i + j + k + m = 0 degeneracy



The minimal extended polynomial

MEP(i + j + k −m) =(i + j + k −m)·
(i − j − k + m)·
(i − j + k −m)·
(i + j − k −m)·
(i − j − k −m)·
(i − j + k + m)·
(i + j − k + m)·
(i + j + k + m)



Viviani’s theorem (reformalized)

Theorem
Let ABC be a regular triangle and D another point on the plane.
Let i , j and k be the distance of D from the sides of the triangle,
respectively. Let m be the height of the triangle. Then, provided
that none of the conditions

I i + m = j + k,

I i + k = j + m,

I i + j = k + m,

I i = j + k + m,

I j = i + k + m,

I k = i + j + m

hold, i + j + k = m follows.



Viviani’s theorem (3D generalization)

GeoGebra applet is available at
https://www.geogebra.org/m/a9J4F4Qj

https://www.geogebra.org/m/a9J4F4Qj


Other uses: definition of hyperbola/ellipse

Given a hyperbola h with foci A and B and point C , another point P is
an element of the hyperbola if and only if |AC − CB| = |AP − PB|, that
is, (AC − CB)2 = (AP − PB)2. Let ph = (AC − CB)2 − (AP − PB)2 =
(AC − CB − AP + PB) · (AC − CB + AP − PB). Similarly, for an ellipse
e described with the same points, AC + CB = AP + PB holds, so we set
pe = AC + CB − AP − PB.
By using the MEP approach for the inputs ph and pe we get

MEP(ph) = MEP(pe) =ph · pe ·
(AC + CB − AP − PB)·
(AC + CB + AP − PB)·
(AC + CB + AP + PB)·
(AC − CB − AP − PB)·
(AC − CB + AP + PB)

The last 5 factors are geometrically degenerate cases, that is, the

hyperbola and the ellipse are undistinguishable, but there are no other

geometrical curves which can be mixed with them in the CAG approach.



Computational complexity

Given a squarefree input polynomial p with ` terms which are not
of even power, (independently of the number of even powers in p)
the output polynomial will consist of 2` (or eventually 2`−1)
factors: the expansion of the output polynomial will consist of
doubly exponential number of terms of the number of not even
powers:

Theorem
Let p consist of k terms of even power: a1t2

1 , a2t2
2 , . . . , akt2

k , and `
terms which are not of even power: t ′1, t ′2, . . . , t ′`, that is,
p = a1t2

1 + . . . + akt2
k + t ′1 + . . . + t ′`. Now MEP(p) is

I a product of 2` factors if k > 0,

I a product of 2`−1 factors if k = 0.



Summary

The opportunity to type arbitrary expressions (involving distances,
lengths, volumes, etc.) is, in our opinion, a desirable feature of
theorem provers in a DGS, allowing the user to access new
horizons in studying, discovering and enjoying Euclidean geometry.
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