edukera>

Solve an exercise

Puzzle game

Let A B C be points

Let A B C be points

Let A B C be points

edukera =

user-friendly proof assistant +

course axioms +
tutorials +
training exercises

Demonstration

edukera.appspot.com
$\pm \quad \pm \div \quad x^{2} \quad \varnothing$
$=x=\leq \Sigma$

Opérations
Addition et soustraction
Soustraction et addition *
Multiplication haut et bas *

Distributivité
Factorisation *
Factorisation *
Développement *

Simplifications
Simplification \#
Dénominateur commun ${ }^{\text {\# }}$
Simplification haut et bas $\uparrow \downarrow$
Racine d'un carré *

Identités remarquables
Carré polynomial \uparrow \&
Différence de carrés 令

Autres réécritures
Réécritures \uparrow *
Changement de variable *
Commutativité

Démontrer
Quelle que soit la suite \mathbf{S},
quel que soit l'entier n,

$$
\begin{aligned}
& s i \mathbf{S}_{n}=\sum_{k=1}^{n} \frac{\boldsymbol{k}}{(\boldsymbol{k}+1)!} \\
& \text { alors } \mathbf{S}_{n}=1-\frac{1}{(\boldsymbol{n}+1)!}
\end{aligned}
$$

Soit la suite \mathbf{S}

Soit l'entier \boldsymbol{n}
Supposons que $\mathbf{S}_{n}=\sum_{\boldsymbol{k}=1}^{\boldsymbol{n}} \frac{\boldsymbol{k}}{(\boldsymbol{k}+1)!}$ (1)

$$
\mathbf{S}_{n}=\sum_{k=1}^{n} \frac{\boldsymbol{k}+1-1}{(\boldsymbol{k}+1)!}
$$

d'après (1), par addition et soustraction de 1 à k

$$
\begin{equation*}
\mathbf{S}_{n}=\sum_{k=1}^{n}\left(\frac{\boldsymbol{k}+1}{(k+1)!}-\frac{1}{(k+1)!}\right) \tag{3}
\end{equation*}
$$

4 Deduction à partir de (4)

Aperçu

$$
\mathbf{S}_{n}=\sum_{k=1}^{n} \frac{\boldsymbol{k}+1}{(k+1)!}-\sum_{k=1}^{n} \frac{1}{(k+1)!}
$$

Conclusion

$$
\lim _{n \rightarrow 12} \mathbf{S}_{n}=\lim _{n \rightarrow 13} \sum_{k=1}^{n} \frac{k+1}{(k+1)!}-\sum_{k=1}^{n} \frac{1}{(k+1)!}
$$

d'après (4), par passage à la limite

$$
\text { Valeur de } 1 \text { ? } \mid
$$

$$
0 \curvearrowleft \sim
$$

Appliquer
d'après (2), par développement
$\mathbf{S}_{n}=\sum_{k=1}^{n} \frac{\boldsymbol{k}+1}{(\boldsymbol{k}+1)!}-\sum_{k=1}^{n} \frac{1}{(\boldsymbol{k}+1)!}$
(4)
d'après (3), par linéarité de l'opérateur sigma appliquée à $\sum_{\mathbf{k}=1}^{\mathbf{n}}\left(\frac{\mathbf{k}+1}{(\mathbf{k}+1)!}-\frac{1}{(\mathbf{k}+1)!}\right)$
Conclusion

Logic (-80 exercises)

Algebra (~100 exercises)

Merci

benoit.rognier@edukera.com

@edukera

