Implementing Automatic Discovery in GeoGebra

M. A. Abánades, Universidad Rey Juan Carlos
F. Botana, Universidad de Vigo
Z. Kovács, The Private University College of Education of the Diocese of Linz
T. Recio, Universidad de Cantabria
C. Sólyom-Gecse, Babes-Bolyai University

- Automatic Proving vs. Automatic Discovering
- Automatic Proving:
- establishing if some statement is true
" Automatic Discovery:
- establishing when some statement is true

- E, F and G not aligned in general

- When are E, F and G aligned?
- i.e. for which positions of P?

- E, F and G are aligned if and only if P is on circle through A, B and C
- Wallace-Simson theorem

Theorem:

If E, F and G are the orthogonal projections of P onto the sides of triangle $A B C$, then E, F and G are aligned.

Theorem:
If E, F and G are the orthogonal projections of P onto the sides of triangle $A B C$ and P is on the circumcircle of $A B C$, then E, F and G are aligned.

- Automatic Proving in elementary geometry

- Algorithms, using computer algebra methods, for confirming (or refuting) the truth of some given geometric statement
- Translate hypotheses and theses into systems of polynomial equations

$$
\left.\begin{array}{l}
H \rightarrow S_{H} \\
T \rightarrow S_{T}
\end{array}\right\} \rightarrow[H \Rightarrow T]:\left[S_{H} \subseteq S_{T}\right]
$$

- Geometric statements become set inclusion statements
- Elucidated by some computer algebra tools
- Initiated by Wu in the 1980's
- Other authors: Chou, Kapur, Wang, ...

- Automatic Discovery in elementary geometry

- Consider a statement $H \Rightarrow T$ that is false in most relevant cases.
- It aims to automatically produce additional hypotheses H_{0} for the (new) statement $\left(H \wedge H_{0}\right) \Rightarrow T$ to be true.

$$
\begin{aligned}
& \text { we have: } H \Rightarrow T \text { false } \\
& \text { we want: }\left(H \wedge H_{0}\right) \Rightarrow T \text { true }
\end{aligned}
$$

- Complementary hypotheses in terms of the free variables for the construction.
- Proposed in
- T. Recio, M.P. Vélez: Automatic discovery of theorems in elementary geometry, Journal of Automated Reasoning 23: pp. 63-82, 1999

- E, F and G not aligned in general
- When are E, F and G aligned?
- for which positions of P ?

$\left\{\begin{array}{l}\text { Line }(P, E) \perp \operatorname{Line}(C, B) \\ E \in \operatorname{Line}(C, B) \\ \operatorname{Line}(P, F) \perp \operatorname{Line}(A, C) \\ F \in \operatorname{Line}(A, C) \\ \operatorname{Line}(P, G) \perp \operatorname{Line}(A, B) \\ G \in \operatorname{Line}(A, B)\end{array}\right.$
- Assign coordinates:

$$
A(0,0) B(3,0) C(2,2) P(x, y) E\left(x_{1}, x_{2}\right) F\left(x_{3}, x_{4}\right) G\left(x_{5}, x_{6}\right)
$$

$$
\left\{\begin{array}{l}
x-y-x_{1}+2 x_{2}=0 \\
-2 x_{1}-x_{2}+2=0 \\
x+y-x_{3}-x_{4}=0 \\
x_{3}-x_{4}=0 \\
x-x_{5}=0 \\
x_{6}=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
x-y-x_{1}+2 x_{2}=0 \\
-2 x_{1}-x_{2}+2=0 \\
x+y-x_{3}-x_{4}=0 \\
x_{3}-x_{4}=0 \\
x-x_{5}=0 \\
x_{6}=0
\end{array}\right.
$$

¢ $\left(x_{5}-x_{1}\right) \times\left(x_{4}-x_{2}\right)-\left(x_{3}-x_{1}\right)\left(x_{6} \quad x_{2}\right) \quad \theta$

$$
x^{2}+y^{2}-3 x-y=0
$$

"Solving for x and y "
(Elimination theory - Gröbner bases)

- Discovery over one free point P in the plane

- (In general) Results in a curve
- Locus of positions of P such that the extra condition is satisfied
- e.g. E, F and G collinear in the example
- Locus set defined implicitly by a condition on the "locus point"
- Implicit Locus = locus obtained from "discovery"
- Can not be constructed
- Only "discovered"
- Example of implicit locus:

- Locus of points P such that its projections are aligned
- Standard Ioci in Dynamic Geometry
- "tracer-mover"
- Defined by the positions of a tracer point that depends on a mover point running along a 1-dimensional set
- Can be constructed

" Example of "tracer-mover" locus:

Circle with center A through B
C point in the plane
D point on the black circle
E = midpoint(D,C)
E traces the locus (red circle) as D moves (along black circle)

- Computation of loci in GeoGebra
- LocusEquation[<Locus Point>,<Moving Point>]
- Command in GeoGebra that computes equation of locus
- Only for tracer-mover loci
- Based on previous collaboration (2010)

- Discovery in GeoGebra

- Collaboration with GeoGebra developing team
- Generalizing LocusEquation[<Locus Point>,<Moving Point>]
- LocusEquation[<Boolean Expression>,<Free Point>]
- Boolean Expression = extra condition (thesis)
" Free Point = point over which we "discover"
- For which positions of P is the extra condition satisfied?

LocusEquation[AreCollinear[E,F,G], P]

- Example of discovery in GeoGebra

- Right triangle altitude theorem

ABC right triangle
$D=$ Projection of A onto $B C$
$e=$ Distance (A, D)
$f=\operatorname{Distance}(B, D)$
$g=$ Distance (C, D)

- True for any non-right triangles?
- When is

$$
\text { Distance }(A, D)^{2}=\operatorname{Distance}(B, D) \not \subset \text { Distance }(C, D)
$$

- For which positions of A?
- LocusEquation[e*e $\left.==f^{*} g, A\right]$

- Locus = circle + hyperbola

- Example of discovery in GeoGebra

- Orthic triangle
$A B P$ triangle
$C=$ Projection of B onto $A P$
$D=$ Projection of A onto $B P$
$E=$ Projection of P onto $B A$
$C D E=$ Orthic triangle of $A B P$

- When is the orthic triangle equilateral?
- When is $m=n=p$?
- For which positions of P ?

LocusEquation $[m==n, P]$, LocusEquation[$m==p, P]$

Locus $=$ eight intersection points

- Example of discovery in GeoGebra

- Variation of Simson-Wallace Theorem

$A B C$ triangle

P point in the plane
$E=\underline{\text { Parallel projection of } P \text { onto } A B}$
$F=\underline{\text { Parallel projection of } P \text { onto } A C}$
$G=\underline{\text { Parallel projection of } P \text { onto } B C}$

- When are E,F and G aligned?
- For which positions of P?
- LocusEquation[AreCollinear[E,F,G], P]

- Locus = ellipse

- Discovery over several points

- When is α a right angle?

- for which positions of C and D ?

$$
\left\{\begin{array}{l}
x_{4}=0 \\
x_{5}-\frac{x_{1}}{2}=0 \\
x_{6}-\frac{x_{2}}{2}=0 \\
x_{1} \times\left(x_{3}-x_{5}\right)+x_{2} \quad\left(x_{4} \quad x_{6}\right) \quad \theta
\end{array}\right.
$$

$$
x_{1}^{2}+x_{2}^{2}-x_{1} x_{3}=0 \quad x_{4}=0
$$

Not direct graphic interpretation
Not (yet) implemented in GeoGebra

- Conclusion

- Dynamic Geometry + Discovery helps...
". . . exploring and modeling the more creative humanlike thought processes of inductively exploring and manipulating diagrams to discover new insights about geometry".

Johnson, L. E.: Automated Elementary Geometry Theorem Discovery via Inductive Diagram Manipulation.

Master Thesis. MIT. (2015).

Thank you

