An equivalence proof between rank theory and incidence projective geometry

David Braun \& Nicolas Magaud \& Pascal Schreck

27 june 2016

Euclidean Geometry

Geometric concepts

- Points
- Lines
- Incidence
- Distance
- Angles
- Circles
- ...

Euclidean Geometry

Geometric concepts

- Points
- Lines
- Incidence
- Distance
- Angles
- Circles
- ...

Incidence Geometry (IG)

Informal axiomatization of IG

(1) There is always a line passing through two points
(2) On any line, there are at least two points
(3) There exist three points that are not aligned

Incidence Projective Geometry (PG)

Informal axiomatization of PG

(1) There is always a line passing through two points
(2) On any line, there are at least two points
(3) There exist three points that are not aligned
(9) Two lines always meet in the plane

Objective

Challenge
Establish an efficient procedure for decision to prove theorems of incidence projective geometry

Objective

Challenge

Establish an efficient procedure for decision to prove theorems of incidence projective geometry

Goals

- Automation of proofs
- Prove theorems of projective geometry

Desargues Theorem

"If two triangles are perspective from a point, they are perspective from a line"

Desargues Theorem in PG

Desargues Theorem in PG

- Ten points: O A B C A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \alpha \beta \gamma$

Desargues Theorem in PG

Desargues Theorem in PG

- Ten points: O A B C A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \alpha \beta \gamma$
- Ten lines: $(O B)(O A)(O C)(A B)$ ($\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)(\mathrm{AC})\left(\mathrm{A}^{\prime} \mathrm{C}^{\prime}\right)(\mathrm{BC})\left(\mathrm{B}^{\prime} \mathrm{C}^{\prime}\right)(\alpha \gamma)$
- Thirty incidences: Incid $O(O B)$, Incid B' (OB), Incid B (OB) ...

Desargues Theorem in PG

- Ten points: O A B C A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \alpha \beta \gamma$
- Ten lines: $(O B)(O A)(O C)(A B)$ ($\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)(\mathrm{AC})\left(\mathrm{A}^{\prime} \mathrm{C}^{\prime}\right)(\mathrm{BC})\left(\mathrm{B}^{\prime} \mathrm{C}^{\prime}\right)(\alpha \gamma)$
- Thirty incidences: Incid $O(O B)$, Incid B' (OB), Incid B (OB) ...
- Concepts: equality, collinearity, coplanarity

Desargues Theorem in PG

- Ten points: O A B C A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \alpha \beta \gamma$
- Ten lines: $(O B)(O A)(O C)(A B)$ ($\left.\mathrm{A}^{\prime} \mathrm{B}^{\prime}\right)(\mathrm{AC})\left(\mathrm{A}^{\prime} \mathrm{C}^{\prime}\right)(\mathrm{BC})\left(\mathrm{B}^{\prime} \mathrm{C}^{\prime}\right)(\alpha \gamma)$
- Thirty incidences: Incid $\mathrm{O}(\mathrm{OB})$, Incid B' (OB), Incid B (OB) ...
- Concepts: equality, collinearity, coplanarity
- Some conditions to deal with degenerate cases

Rank theory (RK)

Concept of rank

Integer function noted $r k(\mathrm{E})$ returning the dimension of the set of points E

Rank theory (RK)

Concept of rank

Integer function noted $r k(E)$ returning the dimension of the set of points E

Some examples

$$
\begin{array}{ll}
r k\{\mathrm{~A}, \mathrm{~B}\}=1 & \mathrm{~A}=\mathrm{B} \\
r k\{\mathrm{~A}, \mathrm{~B}\}=2 & \mathrm{~A} \neq \mathrm{B} \\
r k\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}=2 & \mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { are collinear } \\
& \text { with at least two of them distinct } \\
r k\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\} \leq 2 & \mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { are collinear } \\
r k\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}=3 & \mathrm{~A}, \mathrm{~B}, \mathrm{C} \text { are not collinear } \\
r k\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}=3 & \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \text { are coplanar, not all collinear } \\
r k\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\}=4 & \mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D} \text { are not coplanar }
\end{array}
$$

Desargues Theorem in RK

Desargues Theorem in RK

- Ten points: O A B C A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \alpha \beta \gamma$

Desargues Theorem in RK

- Ten points: O A B C A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \alpha \beta \gamma$
- Ten sets: $r k\left\{\mathrm{O}, \mathrm{A}, \mathrm{A}^{\prime}\right\}=2, \operatorname{rk}\{\mathrm{~A} \operatorname{B} \gamma\}$ $=2, r k\{\alpha \beta \gamma\}=2 \ldots$

Desargues Theorem in RK

- Ten points: O A B C A' $\mathrm{B}^{\prime} \mathrm{C}^{\prime} \alpha \beta \gamma$
- Ten sets: $r k\left\{\mathrm{O}, \mathrm{A}, \mathrm{A}^{\prime}\right\}=2, \operatorname{rk}\{\mathrm{~A} B \gamma\}$ $=2, r k\{\alpha \beta \gamma\}=2 \ldots$
- Some conditions to deal with degenerate cases

Objective

Challenge

Establish an efficient procedure for decision based on the notion of rank to prove theorems of incidence projective geometry

Objective

Challenge

Establish an efficient procedure for decision based on the notion of rank to prove theorems of incidence projective geometry

Goals

- Prove the equivalence between the two approaches
- Develop a bilateral process of translation
- Automation of proofs
- Prove theorems of projective geometry

Axioms of projective geometry in 2D

5 axioms

- Line-Existence: $\forall \mathrm{A} \mathrm{B}$: Point, $\exists \mathrm{I}$: Line, $A \in I \wedge B \in I$

- Point-Existence : $\forall \mathrm{Im}$: Line, $\exists \mathrm{A}:$ Point, $A \in I \wedge A \in m$

- Three-Points : $\forall I$: Line, $\exists \mathrm{ABC}$: Point, $A \neq B \wedge B \neq C \wedge A \neq C \wedge$ $A \in I \wedge B \in I \wedge C \in I$
- Uniqueness : $\forall \mathrm{AB}$: Point, $\forall \mathrm{Im}$: Line, $A \in I \wedge B \in I \wedge A \in m \wedge B \in m \Rightarrow A=B \vee I=m$

- Lower-Dimension-2 : ヨ I m : Line, $\mathrm{I} \neq \mathrm{m}$

Axioms of projective geometry in 3D

5 axioms

- Line-Existence: $\forall \mathrm{A} \mathrm{B}$: Point, $\exists \mathrm{I}$: Line, $A \in I \wedge B \in I$
- Pasch : $\forall \mathrm{A}$ B C D : Point, $\forall I_{A B} I_{C D} I_{A C} I_{B D}$: Line, $A \neq B \wedge A \neq C \wedge A \neq D \wedge B \neq C \wedge B \neq D \wedge C \neq D$, $\mathrm{A} \in I_{A B} \wedge \mathrm{~B} \in I_{A B} \wedge C \in I_{C D} \wedge \mathrm{D} \in I_{C D} \wedge$ $A \in I_{A C} \wedge C \in I_{A C} \wedge B \in I_{B D} \wedge D \in I_{B D} \wedge$
$\left(\exists \mathrm{I}:\right.$ Point, $\left.I \in I_{A B} \wedge I \in I_{C D}\right) \Rightarrow$
 $\left(\exists \mathrm{J}:\right.$ Point, $\left.J \in I_{A C} \wedge J \in I_{B D}\right)$
- Three-Points : $\forall \mathrm{I}$: Line, $\exists \mathrm{ABC}$: Point, $A \neq B \wedge B \neq C \wedge A \neq C \wedge A \in I \wedge B \in I \wedge C \in I$
- Uniqueness : $\forall \mathrm{A} B:$ Point, $\forall \mathrm{Im}$: Line, $A \in I \wedge B \in I \wedge A \in m \wedge B \in m \Rightarrow A=B \vee I=m$
- Lower-Dimension-3 : $\exists \mathrm{lm}$: Line, $\forall \mathrm{p}$: Point, $\mathrm{p} \notin \mathrm{I} \vee \mathrm{p} \notin \mathrm{m}$

Matroid theory

Origin

The rank function is one of the fundamental concepts of matroid theory

Multiple applications

Some application fields: graph theory, greedy algorithm, geometric configuration, linear algebra, combinatorial optimization

Several axiomatizations
Axiomatization around the concepts: independent sets, bases, circuits, rank function, closure operation, flat ...

Rank

Rank

The integer function rk on a set E is the rank function associated to a matroid iff:

- R1: $\forall X \subseteq E, 0 \leq r k(X) \leq|X|$ (non negative and subcardinal)
- R2: $\forall \mathrm{X} Y \subseteq \mathrm{E}, \mathrm{X} \subseteq \mathrm{Y} \Rightarrow r k(\mathrm{X}) \leq r k(\mathrm{Y})$ (non decreasing)
- R3: $\forall \mathrm{X} Y \subseteq \mathrm{E}, r k(\mathrm{X} \cup \mathrm{Y})+r k(\mathrm{X} \cap \mathrm{Y}) \leq r k(\mathrm{X})+r k(\mathrm{Y})$ (submodular)

Axioms of ranks in 3D

8 axioms

- $\mathbf{R 1}+\mathbf{R} \mathbf{2}+\mathbf{R} 3$
- Rk-singleton : $\forall \mathrm{P}, r k\{\mathrm{P}\} \geq 1$
- Rk-couple : $\forall \mathrm{P} Q, \mathrm{P} \neq \mathrm{Q} \Rightarrow r k\{\mathrm{P}, \mathrm{Q}\} \geq 2$
- Rk-Pasch : $\forall \mathrm{A} B C D$,

$$
r k\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}, \mathrm{D}\} \leq 3 \Rightarrow \exists \mathrm{~J}, r k\{\mathrm{~A}, \mathrm{~B}, \mathrm{~J}\}=r k\{\mathrm{C}, \mathrm{D}, \mathrm{~J}\}=2
$$

- Rk-Three-Points : $\forall \mathrm{A} B$,

$$
\exists \mathrm{C}, r k\{\mathrm{~A}, \mathrm{~B}, \mathrm{C}\}=r k\{\mathrm{~B}, \mathrm{C}\}=r k\{\mathrm{~A}, \mathrm{C}\}=2
$$

- Rk-Lower-Dimension : $\exists \mathrm{A} B C D, r k\{A, B, C, D\} \geq 4$

Equivalence

Theorem

Axiomatization on incidence projective geometry and rank-based axioms system are equivalent respectively in 2D and 3D

Equivalence

Theorem

Axiomatization on incidence projective geometry and rank-based axioms system are equivalent respectively in 2D and 3D

Dimension and direction

(1) Axiomatization of PG in 2D \Longleftarrow Axiomatization of RK in 2D
(2) Axiomatization of PG in $3 \mathrm{D} \Longleftarrow$ Axiomatization of RK in 3D
(3) Axiomatization of PG in 2D \Longrightarrow Axiomatization of RK in 2D
(c) Axiomatization of PG in 3D \Longrightarrow Axiomatization of RK in 3D

Theoretical details

Decidability issue

Decidability of incidence

- Decidability of points equality
- Decidability of lines equality

Incid a $m \vee \neg$ Incid a m

- $a=b \vee a \neq b$
- $I=m \vee I \neq m$

Equality issue

- Parametric equality for points
- Classical equality for lines
- $\mathrm{a}[==] \mathrm{b}$
- $I=m$

Hypothesis

Object, Relation, Function
Point, rank function

1. Characterization of concepts used in the target axiomatization

Source axioms

Rank axiomatization

Intermediate layer

Definitions
Point. Line. Incid

Auxiliary lemmas
Tactics, proof techniques
3. State the target axioms with the previous definitions
4. Proof of the axioms of the target theory using tactics, proof techniques

Goal

Target axioms
Projective geometry axiomatization

Some data

- 21 definitions
- 350 lemmas
- 150 tactics
- 15000 lines of Coq

	RK to PG		PG to RK	
	2D	3D	2 D	3D
Lines of Coq specs	250	350	650	1050
Lines of Coq proofs	300	800	2600	11000

Conclusion

Results

- Equivalence between two axiomatizations in both 2D \& 3D
- Implementation of automation process

Current \& future work

- Bilateral translation
- Automation proofs with ranks
- Other cryptomorphic axiomatizations on matroids

Bibliography I

Buekenhout, Francis.
Handbook of Incidence Geometry: buildings and foundations.
Elsevier, 1995.Coxeter, Harold Scott Macdonald.
Projective Geometry.
Springer Science \& Business Media, 2003.
Fuchs, Laurent and Thery, Laurent.
A formalization of grassmann-cayley algebra in Coq and its application to theorem proving in projective geometry.
Automated Deduction in Geometry, 6877:51-67, 2010.Li, Hongbo and Wu , Yihong.
Automated short proof generation for projective geometric theorems with Cayley and bracket algebras: I. Incidence geometry.

```
Journal of Symbolic Computation, 36(5):717-762, }2003
```

易
Magaud, Nicolas and Narboux, Julien and Schreck, Pascal.
Formalizing Projective Plane Geometry in Coq.
Automated Deduction in Geometry, 6301:141-162, 2008.

Bibliography II

Magaud, Nicolas and Narboux, Julien and Schreck, Pascal.
Formalizing Desargues theorem in Coq using ranks.
ACM, pages 1110-1115, 2009.

Magaud, Nicolas and Narboux, Julien and Schreck, Pascal.
A Case Study in Formalizing Projective Geometry in Coq: Desargues Theorem. Computational Geometry: Theory and Applications, 45(8):406-424, 2012.

Michelucci, Dominique and Schreck, Pascal.
Incidence constraints : a combinatorial approach.
International J. of Computational Geometry \& Application, 16(05n06):443-460, 2006.

Oxley, James G.
Matroid Theory, volume 3.
Oxford University Press, USA, 2006.Richter-Gebert, Jürgen.
Mechanical theorem proving in projective geometry.
Annals of Mathematics and Artificial Intelligence, 13:139-172, 1995.

One axiomatization of matroids

- A set is either independent or dependent.
- The empty set is independent.
- Subsets of an independent set are independent.
- If the sets U and V are independent, and if V has one more element than U , then it is possible to complete U with an element $v \in \mathrm{~V}-\mathrm{U}$ such that $\mathrm{U} \cup\{\mathrm{v}\}$ is independent.

From RK to PG

Characterization

> Definition of Point \& Line
> Definition Point $:=$ Point.
> Inductive LineInd : Type $:=$
> | Cline : forall $(A B:$ Point $)(H: \sim A[==] B)$, Linelnd

Definition of Incid

Definition Incid (P : point)(I : Line) := rk $((f s t P I)(\operatorname{sndP} I) P)=2$.

From RK to PG

Proof techniques

- Rank equality: $r k(\mathrm{a})=r k(\mathrm{~b}) \Longrightarrow$

$$
r k(\mathrm{a}) \geq r k(\mathrm{~b}) \wedge r k(\mathrm{a}) \leq r k(\mathrm{~b})
$$

- Submodularity: $r k(\mathrm{X} \cup \mathrm{Y})+r k(\mathrm{X} \cap \mathrm{Y}) \leq r k(\mathrm{X})+r k(\mathrm{Y})$

Proof principle

(1) State axiom of projective geometry as a lemma
(2) Substitute assertions with previous definitions
(3) Use proof techniques and rank axioms to achieve the proof

From PG to RK

Characterization

```
Définition
Definition rk (m : set point) : nat :=
match m with
empty \(\Rightarrow 0\)
add \(\times\) empty \(\Rightarrow 1\)
\(\mathrm{m} \Rightarrow\) if contains_three_non_collinear_points m then 3
    else if contains_two_distinct_points m then 2
    else 1
end.
```


From PG to RK

Characterization

```
Définition
Definition rk (m : set point) : nat :=
match m with
empty \(\Rightarrow \mathbf{0}\)
add \(\times\) empty \(\Rightarrow 1\)
\(\mathrm{m} \Rightarrow\) if contains_three_non_collinear_points m then 3
    else if contains_two_distinct_points m then 2
    else 1
end.
```

- Either the set is empty

From PG to RK

Characterization

```
Définition
Definition rk (m : set point) : nat :=
match \(m\) with
empty \(\Rightarrow 0\)
add \(\times\) empty \(\Rightarrow \mathbf{1}\)
\(\mathrm{m} \Rightarrow\) if contains_three_non_collinear_points m then 3
    else if contains_two_distinct_points m then 2
    else 1
end.
```

- Either the set is empty
- Either the set represents a point

From PG to RK

Characterization

```
Définition
Definition rk (m : set point) : nat :=
match \(m\) with
empty \(\Rightarrow 0\)
add \(\times\) empty \(\Rightarrow 1\)
\(\mathrm{m} \Rightarrow\) if contains_three_non_collinear_points m then 3
    else if contains_two_distinct_points m then 2
    else 1
end.
```

- Either the set is empty
- Either the set represents a point
- Either the set represents a line

From PG to RK

Characterization

```
Définition
Definition rk (m: set point) : nat :=
match \(m\) with
empty \(\Rightarrow 0\)
add x empty \(\Rightarrow 1\)
| \(\mathrm{m} \Rightarrow\) if contains_three_non_collinear_points m then 3
    else if contains_two_distinct_points m then 2
    else 1
end.
```

- Either the set is empty
- Either the set represents a point
- Either the set represents a line
- Either the set represents a plane

From PG to RK

Structural induction issue
(R2): $\forall \mathrm{X} \subseteq \mathrm{Y}, r k(\mathrm{X}) \leq r k(\mathrm{Y})$

- $0 \leq 0 \Rightarrow \emptyset \subset \emptyset$
- $1 \leq 3 \Rightarrow$ Point \subset Plane
- $3 \leq 2 \Rightarrow$ Plane $\not \subset$ Line

Axiom of submodularity

(R3): $r k(\mathrm{X} \cup \mathrm{Y})+r k(\mathrm{X} \cap \mathrm{Y}) \leq r k(\mathrm{X})+r k(\mathrm{Y})$
Lemma matroid3_rk2_rk2_interrk2_to_unionrk2 : forall I m, rkI $=2 \rightarrow$
rk m $=2 \rightarrow$
rk $(I \cap \mathrm{~m})=2 \rightarrow$
rk $(I \cup m)=2$.

