Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000	000	

An equivalence proof between rank theory and incidence projective geometry

David Braun & Nicolas Magaud & Pascal Schreck

27 june 2016

・ロト ・ 同ト ・ ヨト ・ ヨト

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
●0000	00000	00000		00
Fuclidean	Geometry			

Geometric concepts

- Points
- Lines
- Incidence
- Distance
- Angles
- Circles

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

• ...

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000		00
Fuclidean	Geometry			

Geometric concepts

- Points
- Lines
- Incidence
- Distance
- Angles
- Circles

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

• ...

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000				
Incidonco	Coomotry (IC)		

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Incidence Geometry (IG)

Informal axiomatization of IG

- There is always a line passing through two points
- On any line, there are at least two points
- O There exist three points that are not aligned

Introduction A new approach occord oc

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Incidence Projective Geometry (PG)

Informal axiomatization of PG

- There is always a line passing through two points
- On any line, there are at least two points
- There exist three points that are not aligned
- Two lines always meet in the plane

Introduction ○○○○●	A new approach 00000	Formalism 00000	Equivalence proof	Conclusion
Objective				

Challenge

Establish an efficient procedure for decision to prove theorems of incidence projective geometry

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000				
Objective				

Challenge

Establish an efficient procedure for decision to prove theorems of incidence projective geometry

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Goals

- Automation of proofs
- Prove theorems of projective geometry

Introduction 00000	A new approach ●○○○○	Formalism 00000	Equivalence proof	Conclusion
Desargues ⁻	Theorem			

"If two triangles are perspective from a point, they are perspective from a line"

(日) (日) (日) (日)

э

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000		00000	000	00
Desargues 7	Theorem in PG			

(日)

æ

• Ten points: O A B C A' B' C' $\alpha \ \beta \ \gamma$

ヘロト 人間 ト 人 ヨト 人 ヨト

æ

- \bullet Ten points: O A B C A' B' C' α β γ
- Ten lines: (OB) (OA) (OC) (AB) (A'B') (AC) (A'C') (BC) (B'C') (αγ)

ヘロト ヘ回ト ヘヨト ヘヨト

э

- Ten points: O A B C A' B' C' $\alpha \beta \gamma$
- Ten lines: (OB) (OA) (OC) (AB) (A'B') (AC) (A'C') (BC) (B'C') (αγ)

• Thirty incidences: Incid O (OB), Incid B' (OB), Incid B (OB) ...

- Ten points: O A B C A' B' C' $\alpha \beta \gamma$
- Ten lines: (OB) (OA) (OC) (AB) (A'B') (AC) (A'C') (BC) (B'C') (αγ)

(日) (四) (日) (日) (日)

- Thirty incidences: Incid O (OB), Incid B' (OB), Incid B (OB) ...
- **Concepts**: equality, collinearity, coplanarity

- Ten points: O A B C A' B' C' $\alpha \ \beta \ \gamma$
- Ten lines: (OB) (OA) (OC) (AB) (A'B') (AC) (A'C') (BC) (B'C') (αγ)
- Thirty incidences: Incid O (OB), Incid B' (OB), Incid B (OB) ...
- **Concepts**: equality, collinearity, coplanarity
- Some conditions to deal with degenerate cases

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction 00000	A new approach ○○●○○	Formalism 00000	Equivalence proof	Conclusion
Rank theory	(RK)			

Concept of rank

Integer function noted rk(E) returning the dimension of the set of points E

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	○○●○○	00000		00
Rank theory	/ (RK)			

Concept of rank

Integer function noted rk(E) returning the dimension of the set of points E

Some examples

A = B
$A \neq B$
A,B,C are collinear
with at least two of them distinct
A,B,C are collinear
A,B,C are not collinear
A,B,C,D are coplanar, not all collinear
A,B,C,D are not coplanar

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	○○○●○	00000		00
Desargues ⁻	Theorem in R	K		

• Ten points: O A B C A' B' C' $\alpha \beta \gamma$

<ロト < 回 > < 回 > < 回 > < 回 > < 三 > 三 三

- Ten points: O A B C A' B' C' $\alpha \beta \gamma$
- Ten sets: $rk\{O,A,A'\} = 2$, $rk\{A \ B \ \gamma\} = 2$, $rk\{\alpha \ \beta \ \gamma\} = 2$...

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Ten points: O A B C A' B' C' $\alpha \beta \gamma$
- Ten sets: $rk\{O,A,A'\} = 2$, $rk\{A \ B \ \gamma\} = 2$, $rk\{\alpha \ \beta \ \gamma\} = 2$...

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Some conditions to deal with degenerate cases

Introduction 00000	A new approach ○○○○●	Formalism 00000	Equivalence proof	Conclusion
Objective				

Challenge

Establish an efficient procedure for decision **based on the notion of rank** to prove theorems of incidence projective geometry

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	○○○○●	00000		00
Obiective				

Challenge

Establish an efficient procedure for decision **based on the notion of rank** to prove theorems of incidence projective geometry

Goals

• Prove the equivalence between the two approaches

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Develop a bilateral process of translation
- Automation of proofs
- Prove theorems of projective geometry

(日)

Lower-Dimension-2 : ∃ | m : Line, | ≠ m

5 axioms

- Line-Existence : $\forall A B$: Point, $\exists I$: Line, $A \in I \land B \in I$
- Pasch : $\forall A B C D$: Point, $\forall I_{AB} I_{CD} I_{AC} I_{BD}$: Line, $A \neq B \land A \neq C \land A \neq D \land B \neq C \land B \neq D \land C \neq D$, $A \in I_{AB} \land B \in I_{AB} \land C \in I_{CD} \land D \in I_{CD} \land$ $A \in I_{AC} \land C \in I_{AC} \land B \in I_{BD} \land D \in I_{BD} \land$ $(\exists I : Point, I \in I_{AB} \land I \in I_{CD}) \Rightarrow$ $(\exists J : Point, J \in I_{AC} \land J \in I_{BD})$
- Three-Points : $\forall I$: Line, $\exists A B C$: Point, $A \neq B \land B \neq C \land A \neq C \land A \in I \land B \in I \land C \in I$
- Uniqueness : $\forall A B$: Point, $\forall I m$: Line, $A \in I \land B \in I \land A \in m \land B \in m \Rightarrow A = B \lor I = m$
- Lower-Dimension-3 : \exists Im : Line, \forall p : Point, p \notin I \lor p \notin m

イロト 不得 トイヨト イヨト 二日

Introduction 00000	A new approach 00000	Formalism ○○●○○	Equivalence proof	Conclusion
Matroid th	neory			

Origin

The rank function is one of the fundamental concepts of matroid theory

Multiple applications

Some application fields: graph theory, greedy algorithm, geometric configuration, linear algebra, combinatorial optimization

Several axiomatizations

Axiomatization around the concepts: independent sets, bases, circuits, rank function, closure operation, flat ...

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000	000	
Rank				

Rank

The integer function rk on a set E is the rank function associated to a matroid iff:

- **R1** : $\forall X \subseteq E, 0 \le rk(X) \le |X|$ (non negative and subcardinal)
- R2 : ∀ X Y ⊆ E, X ⊆ Y ⇒ rk(X) ≤ rk(Y) (non decreasing)
- **R3** : $\forall X Y \subseteq E$, $rk(X \cup Y) + rk(X \cap Y) \leq rk(X) + rk(Y)$ (submodular)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	○○○○●	000	
Axioms of ra	anks in 3D			

8 axioms

- R1 + R2 + R3
- **Rk-singleton** : \forall P, $rk\{P\} \ge 1$
- **Rk-couple** : \forall P Q, P \neq Q \Rightarrow *rk*{P,Q} \geq 2
- **Rk-Pasch** : \forall A B C D, rk{A,B,C,D} \leq 3 \Rightarrow \exists J, rk{A,B,J} = rk{C,D,J} = 2
- **Rk-Three-Points** : \forall A B, \exists C, rk{A,B,C} = rk{B,C} = rk{A,C} = 2
- **Rk-Lower-Dimension** : \exists A B C D, rk{A,B,C,D} \geq 4

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000	●○○	
Equivalence				

Theorem

Axiomatization on incidence projective geometry and rank-based axioms system are equivalent respectively in 2D and 3D

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
			000	
Equivalor				

Theorem

Axiomatization on incidence projective geometry and rank-based axioms system are equivalent respectively in 2D and 3D

Dimension and direction

- 2 Axiomatization of PG in 3D \leftarrow Axiomatization of RK in 3D
- $\textbf{③} Axiomatization of PG in 2D \Longrightarrow Axiomatization of RK in 2D$
- $\textbf{ 9 Axiomatization of PG in 3D } \Longrightarrow \textbf{ Axiomatization of RK in 3D}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000	○●○	00
Theoretic	al details			

Decidability issue

Decidability of incidence

- Decidability of points equality
- Decidability of lines equality

Incid a m $\lor \neg$ Incid a m • a = b \lor a \neq b

•
$$I = m \lor I \neq m$$

Equality issue

- Parametric equality for points
- Classical equality for lines

• a[==]b • l = m

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000		●○
Overview				

Some data

- 21 definitions
- 350 lemmas
- 150 tactics
- 15000 lines of Coq

	RK to PG		PG to RK	
	2D	3D	2D	3D
Lines of Coq specs	250	350	650	1050
Lines of Coq proofs	300	800	2600	11000

◆□ ▶ ◆□ ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへ⊙

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000		○●
Conclusion				

Results

 $\bullet\,$ Equivalence between two axiomatizations in both 2D & 3D

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

• Implementation of automation process

Current & future work

- Bilateral translation
- Automation proofs with ranks
- Other cryptomorphic axiomatizations on matroids

Introduction 00000	A new approach 00000	Formalism 00000	Equivalence proof	Conclusion
Bibliograph	ny I			

Buekenhout, Francis.

Handbook of Incidence Geometry: buildings and foundations. Elsevier, 1995.

Coxeter, Harold Scott Macdonald. *Projective Geometry.* Springer Science & Business Media, 2003.

Fuchs, Laurent and Thery, Laurent.

A formalization of grassmann-cayley algebra in Coq and its application to theorem proving in projective geometry.

Automated Deduction in Geometry, 6877:51-67, 2010.

Li, Hongbo and Wu, Yihong.

Automated short proof generation for projective geometric theorems with Cayley and bracket algebras: I. Incidence geometry.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Journal of Symbolic Computation, 36(5):717–762, 2003.

Magaud, Nicolas and Narboux, Julien and Schreck, Pascal. Formalizing Projective Plane Geometry in Coq. *Automated Deduction in Geometry*, 6301:141–162, 2008.

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000	000	
Bibliography	/ II			

Magaud, Nicolas and Narboux, Julien and Schreck, Pascal
Formalizing Desargues theorem in Coq using ranks.
ACM, pages 1110–1115, 2009.

Magaud, Nicolas and Narboux, Julien and Schreck, Pascal. A Case Study in Formalizing Projective Geometry in Coq: Desargues Theorem. *Computational Geometry : Theory and Applications*, 45(8):406–424, 2012.

Michelucci, Dominique and Schreck, Pascal. Incidence constraints : a combinatorial approach.

International J. of Computational Geometry & Application, 16(05n06):443–460, 2006.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Oxley, James G.

Matroid Theory, volume 3. Oxford University Press, USA, 2006.

Richter-Gebert, Jürgen.

Mechanical theorem proving in projective geometry. Annals of Mathematics and Artificial Intelligence, 13:139–172, 1995.

Introduction	A new approach	Formalism	Equivalence proof	Conclusion

One axiomatization of matroids

- A set is either independent or dependent.
- The empty set is independent.
- Subsets of an independent set are independent.
- If the sets U and V are independent, and if V has one more element than U, then it is possible to complete U with an element $v \in V$ -U such that $U \cup \{v\}$ is independent.

Introduction	A new approach	Formalism	Equivalence proof	Conclusion
00000	00000	00000		00
From RK	to PG			

Definition of Point & Line

Definition Point := Point.

Inductive LineInd : Type := | Cline : forall (A B : Point)(H : ~A[==]B), LineInd

Definition of Incid

Definition Incid (P : point)(I : Line) := rk ((fstP I)(sndP I) P) = 2.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ うへぐ

Introduction 00000	A new approach 00000	Formalism 00000	Equivalence proof	Conclusion
From RK to	PG			

Proof techniques

- Rank equality: $rk(a) = rk(b) \Longrightarrow$ $rk(a) \ge rk(b) \land rk(a) \le rk(b)$
- Submodularity: $rk(X \cup Y) + rk(X \cap Y) \le rk(X) + rk(Y)$

Proof principle

- State axiom of projective geometry as a lemma
- Substitute assertions with previous definitions
- **③** Use proof techniques and rank axioms to achieve the proof

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

		00000		
Introduction	A new approach	Formalism	Equivalence proof	Conclusion

```
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3
        else if contains_two_distinct_points m then 2
        else 1
end.
```

From PG t	RK			
Introduction	A new approach	Formalism	Equivalence proof	Conclusion

Définition

```
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3
        else if contains_two_distinct_points m then 2
        else 1
end.
```

• Either the set is empty

From PG t	RK			
Introduction	A new approach	Formalism	Equivalence proof	Conclusion

```
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3
        else if contains_two_distinct_points m then 2
        else 1
end.
```

- Either the set is empty
- Either the set represents a point

00000	00000	00000	000	00
From PC	to RK			

```
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3
        else if contains_two_distinct_points m then 2
        else 1
end.
```

- Either the set is empty
- Either the set represents a point
- Either the set represents a line

00000	00000	00000	000	00
From PC	to RK			

```
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3
        else if contains_two_distinct_points m then 2
        else 1
end.
```

- Either the set is empty
- Either the set represents a point
- Either the set represents a line
- Either the set represents a plane

00000	00000	00000	000	00
From PG to	RK			

Structural induction issue

(R2):
$$\forall X \subseteq Y$$
, $rk(X) \leq rk(Y)$

- $0 \le 0 \Rightarrow \emptyset \subset \emptyset$
- $1 \leq 3 \Rightarrow \mathsf{Point} \subset \mathsf{Plane}$
- $3 \le 2 \Rightarrow$ Plane $\not\subset$ Line

Axiom of submodularity

(R3):
$$rk(X \cup Y) + rk(X \cap Y) \le rk(X) + rk(Y)$$

Lemma matroid3_rk2_rk2_interrk2_to_unionrk2 : forall I m, rk I = 2 \rightarrow rk m = 2 \rightarrow rk (I \cap m) = 2 \rightarrow rk (I \cup m) = 2.