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Incidence Geometry (IG)

Informal axiomatization of IG
1 There is always a line passing through two points
2 On any line, there are at least two points
3 There exist three points that are not aligned
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Incidence Projective Geometry (PG)

Informal axiomatization of PG
1 There is always a line passing through two points
2 On any line, there are at least two points
3 There exist three points that are not aligned
4 Two lines always meet in the plane
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Objective

Challenge
Establish an efficient procedure for decision to prove theorems of
incidence projective geometry

Goals
Automation of proofs
Prove theorems of projective geometry
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Desargues Theorem in PG
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Some conditions to deal with
degenerate cases
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Rank theory (RK)

Concept of rank
Integer function noted rk(E) returning the dimension of the set of
points E

Some examples
rk{A,B} = 1 A = B
rk{A,B} = 2 A 6= B
rk{A,B,C} = 2 A,B,C are collinear

with at least two of them distinct
rk{A,B,C} ≤ 2 A,B,C are collinear
rk{A,B,C} = 3 A,B,C are not collinear
rk{A,B,C,D} = 3 A,B,C,D are coplanar, not all collinear
rk{A,B,C,D} = 4 A,B,C,D are not coplanar
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Desargues Theorem in RK
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Objective

Challenge
Establish an efficient procedure for decision based on the notion
of rank to prove theorems of incidence projective geometry

Goals
Prove the equivalence between the two approaches
Develop a bilateral process of translation
Automation of proofs
Prove theorems of projective geometry
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Axioms of projective geometry in 2D

5 axioms

Line-Existence : ∀ A B : Point, ∃ l : Line,
A ∈ l ∧ B ∈ l

Point-Existence : ∀ l m : Line, ∃ A : Point,
A ∈ l ∧ A ∈ m

Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧
A ∈ l ∧ B ∈ l ∧ C ∈ l

Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

Lower-Dimension-2 : ∃ l m : Line, l 6= m
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Axioms of projective geometry in 3D

5 axioms

Line-Existence : ∀ A B : Point, ∃ l : Line,
A ∈ l ∧ B ∈ l

Pasch : ∀ A B C D : Point, ∀ lAB lCD lAC lBD : Line,
A 6= B ∧ A 6= C ∧ A 6= D ∧ B 6= C ∧ B 6= D ∧ C 6= D,
A ∈ lAB ∧ B ∈ lAB ∧ C ∈ lCD ∧ D ∈ lCD ∧
A ∈ lAC ∧ C ∈ lAC ∧ B ∈ lBD ∧ D ∈ lBD ∧
(∃ I : Point, I ∈ lAB ∧ I ∈ lCD) ⇒
(∃ J : Point, J ∈ lAC ∧ J ∈ lBD)

Three-Points : ∀ l : Line, ∃ A B C : Point,
A 6= B ∧ B 6= C ∧ A 6= C ∧ A ∈ l ∧ B ∈ l ∧ C ∈ l

Uniqueness : ∀ A B : Point, ∀ l m : Line,
A ∈ l ∧ B ∈ l ∧ A ∈ m ∧ B ∈ m ⇒ A = B ∨ l = m

Lower-Dimension-3 : ∃ lm : Line, ∀ p : Point,
p /∈ l ∨ p /∈ m
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Matroid theory

Origin
The rank function is one of the fundamental concepts of matroid
theory

Multiple applications
Some application fields: graph theory, greedy algorithm,
geometric configuration, linear algebra, combinatorial optimization

Several axiomatizations
Axiomatization around the concepts: independent sets, bases,
circuits, rank function, closure operation, flat ...
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Rank

Rank
The integer function rk on a set E is the rank function associated
to a matroid iff:

R1 : ∀ X ⊆ E, 0 ≤ rk(X) ≤ |X|
(non negative and subcardinal)
R2 : ∀ X Y ⊆ E, X ⊆ Y ⇒ rk(X) ≤ rk(Y)
(non decreasing)
R3 : ∀ X Y ⊆ E, rk(X ∪ Y) + rk(X ∩ Y) ≤ rk(X) + rk(Y)
(submodular)
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Axioms of ranks in 3D

8 axioms

R1 + R2 + R3
Rk-singleton : ∀ P, rk{P} ≥ 1
Rk-couple : ∀ P Q, P 6= Q ⇒ rk{P,Q} ≥ 2
Rk-Pasch : ∀ A B C D,

rk{A,B,C,D} ≤ 3 ⇒∃ J, rk{A,B,J} = rk{C,D,J} = 2
Rk-Three-Points : ∀ A B,
∃ C, rk{A,B,C} = rk{B,C} = rk{A,C} = 2

Rk-Lower-Dimension : ∃ A B C D, rk{A,B,C,D} ≥ 4
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Equivalence

Theorem
Axiomatization on incidence projective geometry and rank-based
axioms system are equivalent respectively in 2D and 3D

Dimension and direction
1 Axiomatization of PG in 2D ⇐= Axiomatization of RK in 2D
2 Axiomatization of PG in 3D ⇐= Axiomatization of RK in 3D
3 Axiomatization of PG in 2D =⇒ Axiomatization of RK in 2D
4 Axiomatization of PG in 3D =⇒ Axiomatization of RK in 3D
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Theoretical details

Decidability issue

Decidability of incidence
Decidability of points equality
Decidability of lines equality

Incid a m ∨ ¬Incid a m
a = b ∨ a 6= b
l = m ∨ l 6= m

Equality issue

Parametric equality for points
Classical equality for lines

a[==]b
l = m
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Overview

Some data
21 definitions
350 lemmas
150 tactics
15000 lines of Coq

RK to PG PG to RK
2D 3D 2D 3D

Lines of Coq specs 250 350 650 1050
Lines of Coq proofs 300 800 2600 11000
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Conclusion

Results
Equivalence between two axiomatizations in both 2D & 3D
Implementation of automation process

Current & future work
Bilateral translation
Automation proofs with ranks
Other cryptomorphic axiomatizations on matroids
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One axiomatization of matroids
A set is either independent or dependent.
The empty set is independent.
Subsets of an independent set are independent.
If the sets U and V are independent, and if V has one more
element than U, then it is possible to complete U with an
element v ∈ V-U such that U ∪ {v} is independent.
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From RK to PG

Characterization

Definition of Point & Line
Definition Point := Point.

Inductive LineInd : Type :=
| Cline : forall (A B : Point)(H : ∼A[==]B), LineInd

Definition of Incid
Definition Incid (P : point)(l : Line) :=
rk ((fstP l)(sndP l) P) = 2.
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From RK to PG

Proof techniques
Rank equality: rk(a) = rk(b) =⇒

rk(a) ≥ rk(b) ∧ rk(a) ≤ rk(b)
Submodularity: rk(X ∪ Y) + rk(X ∩ Y) ≤ rk(X) + rk(Y)

Proof principle
1 State axiom of projective geometry as a lemma
2 Substitute assertions with previous definitions
3 Use proof techniques and rank axioms to achieve the proof



Introduction A new approach Formalism Equivalence proof Conclusion

From PG to RK

Characterization

Définition
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3

else if contains_two_distinct_points m then 2
else 1

end.

Either the set is empty
Either the set represents a point
Either the set represents a line
Either the set represents a plane



Introduction A new approach Formalism Equivalence proof Conclusion

From PG to RK

Characterization

Définition
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3

else if contains_two_distinct_points m then 2
else 1

end.

Either the set is empty

Either the set represents a point
Either the set represents a line
Either the set represents a plane



Introduction A new approach Formalism Equivalence proof Conclusion

From PG to RK

Characterization

Définition
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3

else if contains_two_distinct_points m then 2
else 1

end.

Either the set is empty
Either the set represents a point

Either the set represents a line
Either the set represents a plane



Introduction A new approach Formalism Equivalence proof Conclusion

From PG to RK

Characterization

Définition
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3

else if contains_two_distinct_points m then 2
else 1

end.

Either the set is empty
Either the set represents a point
Either the set represents a line

Either the set represents a plane



Introduction A new approach Formalism Equivalence proof Conclusion

From PG to RK

Characterization

Définition
Definition rk (m : set point) : nat :=
match m with
| empty ⇒ 0
| add x empty ⇒ 1
| m ⇒ if contains_three_non_collinear_points m then 3

else if contains_two_distinct_points m then 2
else 1

end.

Either the set is empty
Either the set represents a point
Either the set represents a line
Either the set represents a plane



Introduction A new approach Formalism Equivalence proof Conclusion

From PG to RK

Structural induction issue
(R2): ∀ X ⊆ Y, rk(X) ≤ rk(Y)

0 ≤ 0 ⇒ ∅ ⊂ ∅
1 ≤ 3 ⇒ Point ⊂ Plane
3 ≤ 2 ⇒ Plane 6⊂ Line

Axiom of submodularity
(R3): rk(X ∪ Y) + rk(X ∩ Y) ≤ rk(X) + rk(Y)

Lemma matroid3_rk2_rk2_interrk2_to_unionrk2 :
forall l m,
rk l = 2 →
rk m = 2 →
rk (l ∩ m) = 2 →
rk (l ∪ m) = 2.
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